United Kingdom
Safety and Environmental Standards for Fuel Storage Sites
Jan 2009
Publication
The main purpose of this report is to specify the minimum standards of control which should be in place at all establishments storing large volumes of gasoline.<br/>The PSLG also considered other substances capable of giving rise to a large flammable vapour cloud in the event of a loss of primary containment. However to ensure priority was given to improving standards of control to tanks storing gasoline PSLG has yet to determine the scale and application of this guidance to such substances. It is possible that a limited number of other substances (with specific physical properties and storage arrangements) will be addressed in the future.<br/>This report also provides guidance on good practice in relation to secondary and tertiary containment for facilities covered by the CA Control of Major Accident Hazards (COMAH) Parts of this guidance may also be relevant to other major hazard establishments.
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity both seemingly driven by the asymmetric nature of oxygen exchange in composites. We show that initially the particle develops a large amount of internal porosity which boosts activity but on the long term this facilitates structural and compositional reorganisation and eventually degradation. We also correlate the microstructural data with phase and activity analysis to identify structure-property correlations which not only provide valuable insight into the evolution of composite materials under redox conditions but also for the design of new composite materials with enhanced durability.
Hydrogen Taskforce: The Role of Hydrogen in Delivering Net Zero
Feb 2020
Publication
Hydrogen is essential to the UK meeting its net zero emissions target. We must act now to scale hydrogen solutions and achieve cost effective deep decarbonisation. With the support of Government UK industry is ready to deliver.
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
The potential to deploy hydrogen at scale as an energy vector has risen rapidly in the political and industrial consciousness in recent years as the benefits and opportunities have become better understood. Early stage projects across the globe have demonstrated the potential of hydrogen to deliver deep decarbonisation reduce the cost of renewable power and balance energy supply and demand. Governments and major industrial and commercial organisations across the world have set out their ambition to deploy hydrogen technologies at scale. This has created a growing confidence that hydrogen will present both a viable decarbonisation pathway and a global market opportunity. Hydrogen will have an important role to play in meeting the global climate goals set out in the Paris Climate Agreement and due to be discussed later this year at COP26.
The UK’s commitment to a net zero greenhouse gas emissions target has sharpened the conversation around hydrogen. Most experts agree that net zero by 2050 cannot be achieved through electrification alone and as such there is a need for a clean molecule to complement the electron. Hydrogen has properties which lend themselves to the decarbonisation of parts of the energy system which are less well suited to electrification such as industrial processes heating and heavy and highly utilised vehicles. Hydrogen solutions can be scaled meaning that the contribution of hydrogen to meeting net zero could be substantial.
A steady start has been made to exploring the hydrogen opportunity. Partnerships between policymakers and industry exist on several projects which are spread out right across the country from London to many industrial areas in the north east and north west. Existing projects include the early stage roll out of transport infrastructure and vehicles feasibility studies focused on large scale hydrogen production technologies projects exploring the decarbonisation of the gas grid and the development of hydrogen appliances.
The Government recently announced new funding for hydrogen through the Hydrogen Supply Programme and Industrial Fuel Switching Competition. These programmes are excellent examples of collaboration between Government and industry in driving UK leadership in hydrogen and developing solutions that will be critical for meeting net zero.
If the UK is going to meet net zero and capitalise on the economic growth opportunities presented by domestic and global markets for hydrogen solutions and expertise it is critical that the 2020s deliver a step change in hydrogen activity building on the unique strengths and expertise developed during early stage technology development.
The Hydrogen Taskforce brings together leading companies pushing hydrogen into the mainstream in the UK to offer a shared view of the opportunity and a collective position on the next steps that must be taken to ensure that the UK capitalises on this opportunity. There are questions to be answered and challenges that must be overcome as hydrogen technologies develop yet by focusing on what can be done today the benefits of hydrogen can be immediately realised whilst industry expertise and knowledge is built.
You can download the whole document from the Hydrogen Taskforce website here
Sustainable Hydrogen Production: A Role for Fusion
Apr 2007
Publication
This Meeting Report summarises the findings of a two-day workshop in April 2007 at the Culham Science Centre and Worcester College Oxford which explored the potential for large-scale Hydrogen production through methods other than electrolysis.<br/>Operating at the cusp of research and policy-making the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research and source of authoritative information and leadership on sustainable energy systems. The Centre takes a whole systems approach to energy research incorporating economics engineering and the physical environmental and social sciences while developing and maintaining the means to enable cohesive research in energy. A key supporting function of UKERC is the Meeting Place based in Oxford which aims to bring together members of the UK energy community and overseas experts from different disciplines to learn identify problems develop solutions and further the energy debate.
Environmental Audit Committee Inquiry into Hydrogen
Jun 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Environmental Audit Committee’s inquiry into Hydrogen. It is the Taskforce’s view that:
You can download the whole document from the Hydrogen Taskforce website here
- Due to its various applications hydrogen is critical for the UK to reach net zero by 2050;
- The UK holds world-class advantages in hydrogen production distribution and application; and
- Other economies are moving ahead in the development of this sector and the UK must respond.
- Development of a cross departmental UK Hydrogen Strategy within UK Government;
- Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;
- Develop a financial support scheme for the production of hydrogen in blending industry power and transport;
- Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and
- Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the roll-out of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Hydrogen Embrittlement: Future Directions—Discussion
Jun 2017
Publication
The final session of the meeting consisted of a discussion panel to propose future directions for research in the field of hydrogen embrittlement and the potential impact of this research on public policy.
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Liverpool-Manchester Hydrogen Cluster: A Low Cost, Deliverable Project
Aug 2017
Publication
Emissions from natural gas combustion and use are the largest source of greenhouse gas (GHG) emissions in the UK. The use of hydrogen in place of natural gas in principle offers a potential route to long term widespread decarbonisation of gas distribution networks as shown by the Leeds City Gate (‘H21’) study.1 The purpose of considering conversion to hydrogen is to deliver widespread carbon abatement across the UK at lower cost than alternative decarbonisation strategies.<br/>The Government is to finalise and publish the long-awaited ‘Clean Growth Plan’ along with an Industrial Strategy White Paper in Autumn 2017. Conversion from natural gas to hydrogen potentially on an incremental basis would likely represent a major opportunity for new industrial growth. This might be through the longer term stability or potential expansion of existing (newly decarbonised) energy intensive industry or through business opportunities and growth created from new technologies developed to facilitate the transition to hydrogen as the UK becomes a global leader and major exporter of equipment and skills. Job creation and the resulting gross value added (GVA) to the economy could therefore be significant in delivery of the goals of the Industrial Strategy Challenge Fund (ISCF).<br/>The core requirement is to supply low carbon hydrogen in bulk matching production to distribution network demand at an affordable cost. The H21 study concluded that to do so reliably hydrogen is best produced by reducing natural gas in steam methane reformers (SMRs) fitted with Carbon Capture and Storage (CCS). The study proposed that the considerable inter-seasonal and daily fluctuations in network demand can be managed by storing hydrogen in underground salt formations. It concluded that the SMRs with associated carbon dioxide (CO2) capture should be located near to where CO2 transport and storage infrastructure was likely to be created and noted that candidate locations for this are Teesside Humberside Grangemouth and the Liverpool-Manchester (L-M) area. Two of these Humberside and the L-M area are within the Cadent Gas Ltd (‘Cadent’) network and are also industrial ‘clusters’ with significant populations.<br/>The work reported here builds upon the approach proposed in the H21 project by focussing on defining ‘low carbon’ hydrogen supply and distribution systems in Humberside and the L-M area at a system scale sufficient to supply a large city.2 Both the Humber and L-M clusters are close to salt deposits which are suitable for both daily and inter-seasonal storage of hydrogen (for initial or expanded projects). Furthermore new large-scale gas Combined Cycle Gas Turbine (CCGT) plants widely assumed as likely anchor projects for CCS infrastructure have been consented in both cluster areas confirming that they are both strong candidates as locations for the first CCS clusters and hence as locations for a hydrogen supply system.
Transitioning to Hydrogen - Assessing the Engineering Risks and Uncertainties
Jun 2016
Publication
Transitioning to Hydrogen a joint report from five engineering organisations focuses on the engineering challenges of replacing natural gas in the gas distribution network with hydrogen in order to reduce emissions. The production of this report is timely following the commitment from Government this week to legislate for net zero emissions by 2050. It is expected that hydrogen will play a big part in the reduction of emissions from the heating transport and industrial sectors.<br/><br/>The report concludes that there is no reason why repurposing the gas network to hydrogen cannot be achieved but there are some engineering risks and uncertainties that need to be addressed. In the development of the report many questions were posed and members of IMechE IChemE IET and IGEM were surveyed to better understand the challenges faced by the hydrogen production and gas industries planning to undertake this ambitious transition. Further information was obtained from the Health and Safety Laboratories.<br/><br/>The report also highlights 20 ongoing projects in the UK that are looking at various aspects of hydrogen production distribution and use.
Welsh Government’s Department for Economy, Skills & Natural Resources Briefing: Cardiff University’s Expertise to Help Address the Challenges to Creating a CO2 Circular Economy for Wales
Oct 2021
Publication
Through its “Reducing Carbon whilst Creating Social Value: How to get Started’ initiative Welsh Government is keen to explore whether a ‘circular economy’ (and industry) could be developed for Wales for CO2.<br/>Although most companies have targets to reduce their CO2 by 2030 Wales does not have the space to store or bury any excess with the current choice to ship or ‘move the problem’ elsewhere. Meanwhile other industry sectors in Wales are experiencing shortages of CO2 e.g. food production.<br/>Net Zero commitments will require dealing with CO2 emissions from agricultural and industrial sectors and from the production of blue and grey hydrogen during the transition time of switching to green hydrogen. Sequestration and shipping off of CO2 could be costly are not currently possible at large scale and are not sustainable. The use of CO2 by industry e.g. in construction materials and in food production processes can play a major role in addressing CO2 waste production from grey and blue hydrogen.<br/>In a Cradle-to-Cradle approach everything has a use. Is Wales missing out on creating and developing a new innovative industry around a CO2 circular economy?
Hydrogen adsorption on transition metal carbides
Jan 2019
Publication
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides – TiC VC ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased.
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane methanol and ethanol includes catalysts for reforming and oxidation methods of catalyst synthesis and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized.
Health and safety in the new energy economy
Dec 2010
Publication
Over the next decade and beyond the UK is set to take significant steps towards a new energy economy. This will be an economy where the technologies meeting<br/>our electricity heat and fuel needs have to deliver against three key criteria: sustainability security and affordability.<br/><br/>In this context a wide range of emerging energy technologies are expected to play an important role in reshaping the way we satisfy our energy requirements. The extent to which they do so however will depend fundamentally on their ability to be harnessed safely.<br/><br/>Compiled by HSE’s Emerging Energy Technologies Programme this report provides a current assessment of the health and safety hazards that key emerging energy technologies could pose both to workers and to the public at large. (Nuclear energy technologies fall outside the scope of this report.) But it also highlights how an appropriate framework can be and is being put in place to help ensure that these hazards are managed and controlled effectively – an essential<br/>element in enabling the technologies to make a major contribution to the UK’s energy future.
Oxford Energy Podcast – Saudi Aramco’s Perspectives on Hydrogen: Opportunities and Challenges
Jun 2021
Publication
As the world’s largest integrated energy and chemicals company Saudi Aramco continues to invest in technologies and innovative business models to enable the sustainable use of hydrocarbon resources across the value chain. In this podcast David Ledesma discusses with Yasser Mufti Vice President Strategy & Market Analysis Saudi Aramco about Saudi Aramco’s perspectives on hydrogen its opportunities and challenges. This wide-ranging interview discusses Saudi Aramco’s investment in new technologies and the sustainable use of its hydrocarbon resources before addressing the role of hydrogen in achieving a low emissions economy possible business models and the barriers to achieving hydrogen’s growth. The podcast then moves on to discuss ammonia carbon capture utilisation and storage finishing up with a forward-looking perspective on the vision for Saudi Aramco asking how will the company look in 2050 and specifically whether it will still be a hydrocarbon company?
The podcast can be found on their website
The podcast can be found on their website
The Ten Point Plan for a Green Industrial Revolution: Building Back Better, Supporting Green Jobs, and Accelerating Our Path to Net Zero
Nov 2020
Publication
As the world looks to recover from the impact of coronavirus on our lives livelihoods and economies we have the chance to build back better: to invest in making the UK a global leader in green technologies.
The plan focuses on increasing ambition in the following areas:
The plan focuses on increasing ambition in the following areas:
- advancing offshore wind
- driving the growth of low carbon hydrogen
- delivering new and advanced nuclear power
- accelerating the shift to zero emission vehicles
- green public transport cycling and walking
- ‘jet zero’ and green ships
- greener buildings
- investing in carbon capture usage and storage
- protecting our natural environment
- green finance and innovation
Spontaneous Ignition of Hydrogen- Literature Review
Jan 2008
Publication
Objectives
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
Oxford Energy Podcast – How a Traded Hydrogen Market Might Develop – Lessons from the Natural Gas Industry
Jun 2021
Publication
The appetite for a ‘hydrogen market’ has been growing in the past year or two and is often called a ‘market’ by governments regulators and other energy industry players. The question is what ‘hydrogen market’ are they referring to as there is currently no such market established? In this podcast David Ledesma talks to Patrick Heather Senior Research Fellow at the OIES and discusses how a future traded hydrogen market might develop what the prerequisites would be for the development of a wholesale market and whether there are lessons to be learned from the development of the European natural gas market. The podcast ends up by asking the fundamental question – If the European gas market took 25-30 years to liberalise and develop a liquid traded pricing hub where are we headed with hydrogen? Will we ever see a traded market in hydrogen and what must happen to get there? Patrick is cautiously optimistic in his response!
The podcast can be found on their website
The podcast can be found on their website
HyMotion- Network Supplied Hydrogen Unlocks Low Carbon Opportunities
Jun 2019
Publication
The Government’s recently published ‘Road to Zero’ strategy sets out objectives to electrify cars and reduce emissions from heavy goods vehicles (HGVs) through policies such as ending the sale of diesel and petrol cars and subsidising electric charging infrastructure. The CCC response to the strategy however stated that the proposed measures do not go far enough. New Government policies combined with action from industry will be required for mobility related carbon reduction targets to be met.<br/>Hydrogen has been identified by the Government and CCC as one potential solution. The CCC report on a possible future hydrogen economy recognises that in particular hydrogen may have an important role to play for long distance journeys and heavy goods transport. This view was echoed further in the recent CCC ‘Net Zero’ report.<br/>Cadent’s HyNet project will produce low carbon hydrogen through reformation of natural gas combined with carbon capture utilisation and storage (CCUS). HyNet has primarily been designed to supply low carbon heat to industry and a blend of hydrogen to Cadent’s existing natural gas network but also provides the opportunity to supply low cost hydrogen for mobility. The HyMotion project has considered the relative merits of such an approach modelled potential demand scenarios and sought to determine technical and commercial solutions to enable deployment.<br/>Hydrogen fuel cell electric vehicles (FCEVs) share powertrain technologies with battery electric vehicles (BEVs) but the roll-out of BEVs is currently ahead of FCEVs. This is largely due to a lack of low cost low carbon bulk hydrogen production and refuelling infrastructure both of which HyNet seeks to address.
Injecting Hydrogen into the Gas Network- A Literature Search
Jan 2015
Publication
Hydrogen injection into the GB gas network is a likely consequence of using excess offshore wind generated electricity to power large-scale onshore electrolysis plants. Government and DECC in particular now have a keen interest in supporting technologies that can take advantage of the continued use of the gas networks. HSE can contribute to the government’s Growth and Green agendas by effectively regulating and safely enabling this technology.
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
- conveyance of H2/CH4 mixtures in network pipes
- use of H2/CH4 mixtures in consumer appliances (domestic/commercial/industrial)
- explosion and damage characteristics (and ignition likelihood) of H2/CH4 mixtures
- effects on odourisation
Potential Economic Impacts of the HyNet North West Project
Jan 2018
Publication
The objective of the analysis is to provide a robust assessment of the economic impact of HyNet NW over the period to 2050 across both the North West of England and the UK as a whole. Impact is assessed through modelling of direct indirect and induced effect frameworks:
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
- Direct effects – activities that directly accrue due to the construction and operation of the facilities;
- Indirect effects – the purchase of goods and services to facilitate construction/operation; and
- Induced effects – spending of wages and salaries generated directly and indirectly through construction and operation.
Consideration is also given to the potential impacts of inward investment attracted to the North West/UK in the wake of the Project.
Effect of the Time Dependent Loading of Type IV Cylinders Using a Multi-scalemodel
Sep 2019
Publication
The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures that the designed burst pressure should be at least 2.5 times the maximum in-service pressure. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a MonteCarlo analysis of the burst test results. To enrich this study more experiments are required however they are normally limited by the necessity of long duration testing times (loading rate and number of cylinders) and the design (stacking sequence of the composite layer). A multi-scale model incorporating the micromechanical behaviour of composite structures has been developed at Mines ParisTech. The model has shown similar behaviour to that of composite cylinders under different loading rates. This indicates that the model could assist the Monte-Carlo analysis study. An evaluation of the multi-scale model therefore has been carried out to determine its limitations in predicting lifetimes of composite cylinders. The evaluation starts with the comparison of burst pressures with type IV composite cylinders under different loading rates. A μCT-Scan of a type IV cylinder has been carried out at the University of Southampton. The produced images were analysed using the Fast-Fourier Transform (FFT) technique to determine the configuration of the composite layers which is required by the model. Finally the time dependent effect studied by using the multi scale model has been described. In the long-term this study can be used to conduct a parametric study for creating more efficient design of type IV cylinders.
Economic Impact Assessment: Hydrogen is Ready to Power the UK’s Green Recovery
Aug 2020
Publication
Hydrogen solutions have a critical role to play in the UK not only in helping the nation meet its net-zero target but in creating the economic growth and jobs that will kickstart the green recovery.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
You can download the whole document from the Hydrogen Taskforce website at the following links
- Economic Impact Assessment Summary
- Economic impact Assessment Methodology
- Economic impact Assessment of the Hydrogen Value Chain of the UK infographic
- Imperial College Consultants Review of the EIA.
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
Hydrogen Effects in Corrosion: Discussion
Jun 2017
Publication
This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys emphasizing the different observations across length scales from atomic-scale spectrographic to macro-scale fractographic examinations.
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is the transcription of the recorded discussion of the session ‘Hydrogen Effects in Corrosion’ at the Royal Society discussion meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. M.A.S. transcribed the session and E.L.S. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Combustion and Exhaust Emission Characteristics, and In-cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
Feb 2017
Publication
This paper presents a study undertaken on a naturally aspirated direct injection diesel engine investigating the combustion and emission characteristics of CH4-CO2 and CH4-CO2 -H2 mixtures. These aspirated gas mixtures were pilot-ignited by diesel fuel while the engine load was varied between 0 and 7 bar IMEP by only adjusting the flow rate of the aspirated mixtures. The in-cylinder gas composition was also investigated when combusting CH4-CO2 and CH4-CO2-H2 mixtures at different engine loads with in cylinder samples collected using two different sampling arrangements. The results showed a longer ignition delay period and lower peak heat release rates when the proportion of CO2 was increased in the aspirated mixture. Exhaust CO2 emissions were observed to be higher for 60 CH4:40CO2 mixture but lower for the 80CH4:20CO2 mixture as compared to diesel fuel only combustion at all engine loads. Both exhaust and in-cylinder NOx levels were observed to decrease when the proportion of CO2 was increased; NOx levels increased when the proportion of H2 was increased in the aspirated mixture. In-cylinder NOx levels were observed to be higher in the region between the sprays as compared to within the spray core attributable to higher gas temperatures reached post ignition in that region.
Hydrogen Jet Fires in a Passively Ventilated Enclosure
Oct 2015
Publication
This paper describes a combined experimental analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Simulation of Hydrogen Dispersion under Cryogenic Release Conditions
Sep 2013
Publication
The use of hydrogen as fuel should always be accompanied by a safety assessment in case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work the CFD code ADREA-HF is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5 6 7) conducted by the Health and Safety Laboratory (HSL). In these tests LH2 was spilled at a fixed rate of 60lt/min in several directions and for several durations. The factors that influence the vapor dispersion under cryogenic release conditions that were examined in this study are: the air humidity the wind direction and the slip effect of droplets formed by both the cryogenic liquid and the condensation of air humidity. The numerical results were compared with the experimental measurements and the effect of each abovementioned factors in the vapor dispersion is being discussed.
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
Hydrogen-diesel Fuel Co-combustion Strategies in Light Duty and Heavy Duty CI Engines
Apr 2018
Publication
The co-combustion of diesel fuel with H2 presents a promising route to reduce the adverse effects of diesel engine exhaust pollutants on the environment and human health. This paper presents the results of H2-diesel co-combustion experiments carried out on two different research facilities a light duty and a heavy duty diesel engine. For both engines H2 was supplied to the engine intake manifold and aspirated with the intake air. H2 concentrations of up to 20% vol/vol and 8% vol/vol were tested in the light duty and heavy duty engines respectively. Exhaust gas circulation (EGR) was also utilised for some of the tests to control exhaust NOx emissions.<br/>The results showed NOx emissions increase with increasing H2 in the case of the light duty engine however in contrast for the heavy duty engine NOx emissions were stable/reduced slightly with H2 attributable to lower in-cylinder gas temperatures during diffusion-controlled combustion. CO and particulate emissions were observed to reduce as the intake H2 was increased. For the light duty H2 was observed to auto-ignite intermittently before diesel fuel injection had started when the intake H2 concentration was 20% vol/vol. A similar effect was observed in the heavy duty engine at just over 8% H2 concentration.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Odorant - Work Package 2
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project[1] would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Role of Batteries and Fuel Cells in Achieving Net Zero- Session 1
Mar 2021
Publication
The House of Lords Science and Technology Committee will question experts on the role of batteries and fuel cells for decarbonisation and how much they can contribute to meeting the net-zero target.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
Tuesday’s evidence session will be the first of the committee’s new decarbonisation inquiry which was launched on Wednesday 3 March and is currently accepting written evidence submissions.
The session will give an overview of battery and fuel cell technologies and their applications in transport and other sectors. The Committee will ask how battery manufacture can be scaled up to meet wide-scale deployment of electric vehicles and whether technical challenges can be overcome to allow batteries and fuel cells to be used in HGVs and trains. The Committee will also investigate the wider use of batteries and fuel cells in various sectors including integration into power grids and heating systems.
Inquiry Role of batteries and fuel cells in achieving Net Zero
Professor Nigel Brandon Dean of the Faculty of Engineering at Imperial College London
Professor Mauro Pasta Associate Professor of Materials at University of Oxford
Professor Pam Thomas CEO at Faraday Institution and Pro Vice Chancellor for Research at University of Warwick
Mr Amer Gaffar Director of Manchester Fuel Cell Innovation Centre at Manchester Metropolitan University
Possible questions
What contribution are battery and fuel cell technologies currently making towards decarbonization in the UK?
What advances do we expect to see in battery and fuel cell technologies and over what timeframes?
How quickly can UK battery and fuel cell manufacture be scaled up to meet electrification demands?
What are the challenges facing technological innovation and deployment in heavy transport?
Are there any sectors where battery and fuel cell technologies are not currently used but could contribute to decarbonisation?
What are the life cycle environmental impacts of batteries and fuel cells?
Parliament TV video of the meeting
This is part one of a three part enquiry.
Part two can be found here and part three can be found here.
The Hydrogen Economy - Evaluation of the Materials Science and Engineering Issues
Jan 2005
Publication
The main objectives were to identify materials issues relating to the widespread use of hydrogen as a fuel.
MAIN FINDINGS
MAIN FINDINGS
- Hydrogen is seen by many as the answer to the environmental problems of reliance on fossil fuels for energy needs. A great deal of effort is currently being invested in research into all areas of the hydrogen economy such as fuel cells hydrogen generation transportation and storage.
- Fuel cells have the potential to provide power for a very wide range of applications ranging from small portable electronics devices to large stationary electricity production and vehicles covering the whole range of road vehicles and possibly extending to rail marine and even aviation.
- The main obstacles to achieving a viable hydrogen economy are costs of producing hydrogen from renewable sources issues relating to transportation and storage due to the low energy density of hydrogen gas and the cost and reliability of fuel cells.
- The main material considerations relating to the use of hydrogen are hydrogen embrittlement material properties at cryogenic temperatures (due to use of liquid hydrogen) and permeability.
- A number of new materials are likely to come to prominence in a hydrogen economy; high performance composites are likely to be used extensively for high pressure hydrogen cylinders new materials or combinations of materials may be used for hydrogen pipelines and a range of new materials are currently being considered for hydrogen storage such as metal hydrides and carbon nanotubes.
- Due to the effect of hydrogen on materials it is important to test any materials in the environment in which they would be used. Depending on the type of test this could require the use of very specialist expensive equipment.
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Heat Pump Manufacturing Supply Chain Research Project Report
Dec 2020
Publication
The Department for Business Energy and Industrial Strategy (BEIS) commissioned a study to research the capacity of the manufacturing supply chain to meet expected future demand for heat pumps. This report contains analysis of the existing supply chain including component parts and also assesses the risks to and opportunities for growth in domestic heat pump manufacture and export.<br/><br/>Alongside a literature review the findings in this report were supported by interviews with organisations involved in the manufacture of heat pumps and an online workshop held with a range of businesses throughout the supply chain.
Industrial Decarbonisation Policies for a UK Net-Zero Target
Dec 2020
Publication
To inform our Sixth Carbon Budget advice the Climate Change Committee (CCC) asked the University of Leeds to undertake independent research to evaluate which policies (and combinations of policies) would enable industrial decarbonisation in line with the UK’s net zero target without inducing carbon leakage. The research focused on policies applicable to the manufacturing sector but with some consideration also given to the policies required to decarbonise the Fossil Fuel Production and Supply and Non-Road Mobile Machinery sectors. This report:
Sets out a comprehensive review of existing policies;
The paper can be downloaded from the CCC website
Sets out a comprehensive review of existing policies;
- Identifies future policy mechanisms that address key challenges in decarbonising industry;
- Explores how combinations of policies might work together strategically in the form of ‘policy packages’ and how these packages might evolve over the period to 2050;
- Evaluates a series of illustrative policy packages and considers any complementary policies required to minimise carbon leakage and deliver ‘just’ industrial decarbonisation.
- The findings were developed through a combination of literature review and extensive stakeholder engagement with industry government and academic experts.
The paper can be downloaded from the CCC website
Policy-driven, Narrative-based Evidence Gathering: UK Priorities for Decarbonisation Through Biomass
May 2015
Publication
Evidence-based policy-making has been a much-debated concept. This paper builds on various insights for a novel perspective: policy-driven narrative-based evidence gathering. In a case study of UK priority setting for bioenergy innovation documents and interviews were analysed to identify links between diagnoses of the problem societal visions policy narratives and evidence gathering. This process is illuminated by the theoretical concept of sociotechnical imaginaries—technoscientific projects which the state should promote for a feasible desirable future. Results suggest that evidence has been selectively generated and gathered within a specific future vision whereby bioenergy largely provides an input-substitute within the incumbent centralised infrastructure. Such evidence is attributed to an external expertise thus helping to legitimise the policy framework. Evidence has helped to substantiate policy commitments to expand bioenergy. The dominant narrative has been reinforced by the government’s multi-stakeholder consultation favouring the incumbent industry and by incentive structures for industry co-investment.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
Disruptive and Uncertain: Policy Makers’ Perceptions on UK Heat Decarbonisation
May 2020
Publication
<br/>The decarbonisation of heating represents a transformative challenge for many countries. The UK’s net-zero greenhouse gas emissions target requires the removal of fossil fuel combustion from heating in just three decades. A greater understanding of policy processes linked to system transformations is expected to be of value for understanding systemic change; how policy makers perceive policy issues can impact on policy change with knock-on effects for energy system change. This article builds on the literature considering policy maker perceptions and focuses on the issue of UK heat policy. Using qualitative analysis we show that policy makers perceive heat decarbonisation as disruptive technological pathways are seen as deeply uncertain and heat decarbonisation appears to offer policy makers little ‘up-side’. Perceptions are bounded by uncertainty affected by concerns over negative impacts influenced by external influences and relate to ideas of continuity. Further research and evidence on optimal heat decarbonisation and an adaptive approach to governance could support policy makers to deliver policy commensurate with heat decarbonisation. However even with reduced uncertainty and more flexible governance the perceptions of disruption to consumers mean that transformative heat policy may remain unpopular for policy makers potentially putting greenhouse mitigation targets at risk of being missed.
Releases of Unignited Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>The aim of this work is to identify and address hazards relating to the storage and transport of bulk liquid hydrogen (LH2) that are associated with hydrogen refuelling stations located in urban environments. Experimental results will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.<br/>The first phase of the project was to develop an experimental and modelling strategy for the issues associated with liquid hydrogen spills; this was documented in HSL report XS/10/06[1].<br/>The second phase of the project was to produce a position paper on the hazards of liquid hydrogen which was published in 2009 XS/09/72[2]. This was also published as a HSE research report RR769 in 2010[3].<br/>This report details experiments performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on unignited releases which included concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling of the unignited releases has been undertaken at HSL and reported in MSU/12/01 [4]. Ignited releases of hydrogen have also been performed as part of this project; the results and findings from this work are reported in XS/11/77[5].
Egypt’s Low Carbon Hydrogen Development Prospects
Nov 2021
Publication
Egypt has one of the largest economies in the Middle East and North Africa (MENA) region and several of its industries are large sources of greenhouse gas (GHG) emissions. As part of its contribution to mitigate GHG emissions within the framework of the 2015 Paris Agreement on climate change Egypt is focusing on the development of an ambitious renewable energy programme.
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications: UK Version
Jan 2009
Publication
The HYPER project a specific targeted research project (STREP) funded by the European Commission under the Sixth Framework Programme developed an Installation Permitting Guide (IPG) for hydrogen and fuel cell stationary applications. The IPG was developed in response to the growing need for guidance to foster the use and facilitate installation of these systems in Europe. This document presents a modified version of the IPG specifically intended for the UK market. For example reference is made to UK national regulations standards and practices when appropriate as opposed to European ones.<br/>The IPG applies to stationary systems fuelled by hydrogen incorporating fuel cell devices with net electrical output of up to 10 kWel and with total power outputs of the order of 50 kW (combined heat + electrical) suitable for small back up power supplies residential heating combined heat-power (CHP) and small storage systems. Many of the guidelines appropriate for these small systems will also apply to systems up to 100 kWel which will serve small communities or groups of households. The document is not a standard but is a compendium of useful information for a variety of users with a role in installing these systems including design engineers manufacturers architects installers operators/maintenance workers and regulators.<br/>This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents including any opinions and/or conclusions expressed are those of the authors alone and do not necessarily reflect HSE policy.
No more items...