France
Hydrogen-air Vented Explosions- New Experimental Data
Sep 2013
Publication
The use of hydrogen as an energy carrier is a real perspective in Europe since a number of breakthroughs obtained in the last decades open the possibility to envision a deployment at the industrial scale if safety issues are duly accounted. However on this particular aspects experimental data are still lacking especially about the explosion dynamics in realistic dimensions. The purpose of this paper is to provide a set of totally new and well instrumented hydrogen - air vented explosions. Experiments were performed in a large explosion chamber within the scope of the DIMITRHY project (sponsored by the National French Agency for Research). The 4 m3 rectangular experimental chamber (2 m height 2 m width and 1 m depth) is equipped with transparent walls and is vented (0.25 and 0.5 m2 square vents).. Six pressure gauges were used to measure the overpressure evolution inside and outside the chamber. Six concentration gauges were used to control the hydrogen repartition in the vessel. The hydrogen-air cloud was seeded with micro particles of ammonium chloride to see the propagation of the flame the movement of the cloud inside and outside the chamber. The incidence of reactivity vent size ignition position and non homogenous repartition of hydrogen received a particular attention.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
Fast Synthesis of TiNi by Mechanical Alloying and its Hydrogenation Properties
Mar 2019
Publication
Mechanical alloying is widely used for the synthesis of hydrogen storage materials. However amorphization and contamination triggered by long-time milling are serious drawbacks for obtaining efficient hydrogen storage. In this work short-time ball milling synthesis is explored for a representative hydride forming compound: TiNi. Through structural morphological and chemical characterizations we evidence that formation of TiNi is complete in only 20 min with minor Fe contamination (0.2 wt%). Cross-sectional analysis of powder stuck on milling balls reveals that alloy formation occurs through the interdiffusion between thin layers of co-laminated pure elements. Hydrogenation thermodynamics and kinetics of short-time mechanically alloyed TiNi are similar to those of coarse-grained compounds obtained by classical high-temperature melting. Mechanical alloying is a suitable method for fast and energy-efficient synthesis of intermetallic compounds such as TiNi.
Isotopic Tracing of Hydrogen Transport and Trapping in Nuclear Materials
Jun 2017
Publication
Some illustrations of the use of deuterium or tritium for isotopic tracing of hydrogen absorption transport and trapping in nuclear materials are presented. Isotopic tracing of hydrogen has been shown to be successful for the determination of the boundaries conditions for hydrogen desorption or absorption in a material exposed to a hydrogen source. Also the unique capabilities of isotopic tracing and related techniques to characterize H interactions with point defects and dislocations acting as moving traps has been demonstrated. Such transport mechanisms are considered to play a major role in some stress corrosion cracking and hydrogen embrittlement mechanisms.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Comparisons of Helium and Hydrogen Releases in 1 M3 and 2 M3 Two Vents Enclosures: Concentration Measurements at Different Flow Rates and for Two Diameters of Injection Nozzle
Oct 2015
Publication
This work presents a parametric study on the similitude between hydrogen and helium distribution when released in the air by a source located inside of a naturally ventilated enclosure with two vents. Several configurations were experimentally addressed in order to improve knowledge on dispersion. Parameters were chosen to mimic operating conditions of hydrogen energy systems. Thus the varying parameters of the study were mainly the source diameter the releasing flow rate the volume and the geometry of the enclosure. Two different experimental set-ups were used in order to vary the enclosure's height between 1 and 2 m. Experimental results obtained with helium and hydrogen were compared at equivalent flow rates determined with existing similitude laws. It appears for the plume release case that helium can suitably be used for predicting hydrogen dispersion in these operating designs. On the other hand – when the flow turns into a jet – non negligible differences between hydrogen and helium dispersion appear. In this case helium – used as a direct substitute to hydrogen – will over predict concentrations we would get with hydrogen. Therefore helium concentration read-outs should be converted to obtain correct predictions for hydrogen. However such a converting law is not available yet.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Test Campaign on Existing HRS & Dissemination of Results
Apr 2019
Publication
This document is the final deliverable of Tasks 2 & 3 of the tender N° FCH / OP / CONTRACT 196: “Development of a Metering Protocol for Hydrogen Refuelling Stations”. In Task 2 a test campaign was organized on several HRS in Europe to apply the testing protocol defined in Task 1. This protocol requires mainly to perform different accuracy tests in order to determine the error of the complete measuring system (i.e. from the mass flow meter to the nozzle) in real fueling conditions. Seven HRS have been selected to fulfill the requirements specified in the tender. Tests results obtained are presented in this deliverable and conclusions are proposed to explain the errors observed. In the frame of Task 3 results and conclusions have been widely presented to additional Metrology Institutes than those involved in Task 1 in order to get their adhesion on the testing proposed protocol. All the work performed in Tasks 2 & 3 and associated outcomes / conclusions are reported here.
Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities
Jun 2020
Publication
The cost of the hydrogen value chain needs to be reduced to allow the widespread development of hydrogen applications. Mechanical compressors widely used for compressing hydrogen to date account for more than 50% of the CAPEX (capital expenditure) in a hydrogen refuelling station. Moreover mechanical compressors have several disadvantages such as the presence of many moving parts hydrogen embrittlement and high consumption of energy. Non-mechanical hydrogen compressors have proven to be a valid alternative to mechanical compressors. Among these electrochemical compressors allow isothermal and therefore highly efficient compression of hydrogen. On the other hand adsorption-desorption compressors allow hydrogen to be compressed through cooling/heating cycles using highly microporous materials as hydrogen adsorbents. A non-mechanical hybrid hydrogen compressor consisting of a first electrochemical stage followed by a second stage driven by adsorption-desorption of hydrogen on activated carbons allows hydrogen to be produced at 70 MPa a value currently required for the development of hydrogen automotive applications. This system has several advantages over mechanical compressors such as the absence of moving parts and high compactness. Its use in decentralized hydrogen facilities such as hydrogen refuelling stations can be considered
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
Numerical and Experimental Investigation of H2-air and H2-O2 Detonation Parameters in a 9 m Long Tube, Introduction of a New Detonation Model
Sep 2017
Publication
Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model where independent variables were: pressure temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%–66% of hydrogen in oxygen. Simulations were performed using LES one-equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data.
Hydrogen Dispersion in a Closed Environment
Sep 2017
Publication
The highly combustible nature of hydrogen poses a great hazard creating a number of problems with its safety and handling. As a part of safety studies related to the use of hydrogen in a confined environment it is extremely important to have a good knowledge of the dispersion mechanism.<br/>The present work investigates the concentration field and flammability envelope from a small scale leak. The hydrogen is released into a 0.47 m × 0.33 m x 0.20 m enclosure designed as a 1/15 – scale model of a room in a nuclear facility. The performed tests evaluates the influence of the initial conditions at the leakage source on the dispersion and mixing characteristics in a confined environment. The role of the leak location and the presence of obstacles are also analyzed. Throughout the test during the release and the subsequent dispersion phase temporal profiles of hydrogen concentration are measured using thermal conductivity gauges within the enclosure. In addition the BOS (Background Oriented Schlieren) technique is used to visualise the cloud evolution inside the enclosure. These instruments allow the observation and quantification of the stratification effects.
Hot Surface Ignition in Flowing Streams of Hydrogen-Air Mixtures
Sep 2019
Publication
A set of original experiments is presented covering the topic of hydrogen-air mixture ignition by a hot surface. The hot surface is a 30 mm long/10 mm diameter heated coil which temperature is controlled by IR techniques. The coil is placed into the flowing stream of hydrogen air mixtures. The variable parameters are the composition of the flammable atmosphere (4 to 75% H2 v/v) the flow speed (from 0.5 m/s to 30 m/s) and its temperature (from -110°C to ambient). The experimental techniques and results are presented and a tentative interpretation is proposed based on ignition theories and highspeed video recordings. It is shown that the ignition temperature (600°C) is insensitive to flowing conditions which is a very unexpected result.
Development of a Realistic Hydrogen Flammable Atmosphere Inside a 4-m3 Enclosure
Sep 2017
Publication
To define a strategy of mitigation for containerized hydrogen systems (fuel cells for example) against explosion the main characteristics of flammable atmosphere (size concentration turbulence…) shall be well-known. This article presents an experimental study on accidental hydrogen releases and dispersion into an enclosure of 4 m3 (2 m x 2 m x 1 m). Different release points are studied: two circular releases of 1 and 3 mm and a system to create ring-shaped releases. The releases are operated with a pressure between 10 and 40 bars in order to be close to the process conditions. Different positions of the release inside the enclosure i.e. centred on the floor or along a wall are also studied. A specific effort is made to characterize the turbulence in the enclosure during the releases. The objectives of the experimental study are to understand and quantify the mechanisms of formation of the explosive atmosphere taking into account the geometry and position of the release point and the confinement. Those experimental data are analyzed and compared with existing models and could bring some new elements to improve them.
Syngas Explosion Reactivity in Steam Methane Reforming Process
Sep 2013
Publication
During the synthesis of hydrogen by methane steam reforming mixtures composed of H2 CH4 CO and CO2 are produced in the process. In this work the explosion reactivity of these mixtures on the basis of detonation cell size and laminar flame speed is calculated using a reactant assimilation simplification and a kinetic approach. The detonation cells width are calculated using the Cell_CH Kurchatov institute method and the laminar flame velocities are calculated with Chemkin Premix using different detailed chemical kinetic mechanisms. These calculations are used to define if these mixtures could be considered having a medium or a high reactivity for risk assessment in case of leak in the hydrogen plants.
Evaluation of the Performance Degradation of a Metal Hydride Tank in a Real Fuel Cell Electric Vehicle
May 2022
Publication
In a fuel cell electric vehicle (FCEV) powered by a metal hydride tank the performance of the tank is an indicator of the overall health status which is used to predict its behaviour and make appropriate energy management decisions. The aim of this paper is to investigate how to evaluate the effects of charge/discharge cycles on the performance of a commercial automotive metal hydride hydrogen storage system applied to a real FCEV. For this purpose a mathematical model is proposed based on uncertain physical parameters that are identified using the stochastic particle swarm optimisation (PSO) algorithm combined with experimental measurements. The variation of these parameters allows an assessment of the degradation level of the tank’s performance on both the quantitative and qualitative aspects. Simulated results derived from the proposed model and experimental measurements were in good agreement with a maximum relative error of less than 2%. The validated model was used to establish the correlations between the observed degradations in a hydride tank recovered from a real FCEV. The results obtained show that it is possible to predict tank degradations by developing laws of variation of these parameters as a function of the real conditions of the use of the FCEV (number of charging/discharging cycles pressures mass flow rates temperatures).
The Role of Critical Minerals in Clean Energy Transitions
May 2021
Publication
Minerals are essential components in many of today’s rapidly growing clean energy technologies – from wind turbines and electricity networks to electric vehicles. Demand for these minerals will grow quickly as clean energy transitions gather pace. This new World Energy Outlook Special Report provides the most comprehensive analysis to date of the complex links between these minerals and the prospects for a secure rapid transformation of the energy sector.
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Alongside a wealth of detail on mineral demand prospects under different technology and policy assumptions it examines whether today’s mineral investments can meet the needs of a swiftly changing energy sector. It considers the task ahead to promote responsible and sustainable development of mineral resources and offers vital insights for policy makers including six key IEA recommendations for a new comprehensive approach to mineral security."
Link to International Energy Agency website
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Global Hydrogen Review 2021
Oct 2021
Publication
The Global Hydrogen Review is a new annual publication by the International Energy Agency to track progress in hydrogen production and demand as well as in other critical areas such as policy regulation investments innovation and infrastructure development.
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
The report is an output of the Clean Energy Ministerial Hydrogen Initiative (CEM H2I) and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while serving as an input to the discussions at the Hydrogen Energy Ministerial Meeting (HEM) organised by Japan. It examines what international progress on hydrogen is needed to help address climate change – and compares real-world developments with the stated ambitions of government and industry and with key actions under the Global Action Agenda launched at the HEM in 2019.
Focusing on hydrogen’s usefulness for meeting climate goals this Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies while also creating demand for hydrogen and hydrogen-based fuels.
Link to International Energy Agency website
Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review
Sep 2021
Publication
Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them interstitial hydrides also called intermetallic hydrides are hydrides formed by transition metals or their alloys. The main alloy types are A2B AB AB2 AB3 A2B7 AB5 and BCC. A is a hydride that easily forms metal (such as Ti V Zr and Y) while B is a non-hydride forming metal (such as Cr Mn and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH2m−3 ) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH2m−3 ). Additionally for hydrogen absorption and desorption reactions the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds in addition to traditional melting methods mechanical alloying is a very important synthesis method which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Techno-Economic Assessment of Natural Gas Pyrolysis in Molten Salts
Jan 2022
Publication
Steam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term carbon could be produced for 200–300 €/ton granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite ensuring profitable operation even for first movers. In conclusion the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
May 2021
Publication
The global energy transition towards a carbon neutral society requires a profound transformation of electricity generation and consumption as well as of electric power systems. Hydrogen has an important potential to accelerate the process of scaling up clean and renewable energy however its integration in power systems remains little studied. This paper reviews the current progress and outlook of hydrogen technologies and their application in power systems for hydrogen production re-electrification and storage. The characteristics of electrolysers and fuel cells are demonstrated with experimental data and the deployments of hydrogen for energy storage power-to-gas co- and tri-generation and transportation are investigated using examples from worldwide projects. The current techno-economic status of these technologies and applications is presented in which cost efficiency and durability are identified as the main critical aspects. This is also confirmed by the results of a statistical analysis of the literature. Finally conclusions show that continuous efforts on performance improvements scale ramp-up technical prospects and political support are required to enable a cost-competitive hydrogen economy.
Numerical Simulations of Atmospheric Dispersion of Large-scale Liquid Hydrogen Releases
Sep 2021
Publication
Numerical simulations have been conducted for LH2 massive releases and the subsequent atmospheric dispersion using an in-house modified version of the open source computational fluid dynamics (CFD) code OpenFOAM. A conjugate heat transfer model has been added for heat transfer between the released LH2 and the ground. Appropriate interface boundary conditions are applied to ensure the continuities of temperature and heat fluxes. The significant temperature difference between the cryogenic hydrogen and the ground means that the released LH2 will instantly enter in a boiling state resulting in a hydrogen- air gaseous cloud which will initially behave like a dense gas. Numerical predictions have been conducted for the subsequent atmospheric dispersion of the vaporized LH2 for a series of release scenarios - with and without retention pits - to limit the horizontal spread of the LH2 on the ground. The considered cases included the instantaneous release of 1 10 and 50 tons of LH2 under neutral (D) and stable (F) weather conditions. More specifically 3F and 5D conditions were simulated with the former representing stable weather conditions under wind speed of 3 m/s at 10 m above the ground and the later corresponding to neutral weather conditions under 5 m/s wind speed (10 m above the ground). Specific numerical tests have also been conducted for selected scenarios under different ambient temperatures from 233 up to 313 K. According to the current study although the retention pit can extend the dispersion time it can significantly reduce the extent of hazards due to much smaller cloud size within both the flammability and explosion limits. While the former has negative impact on safety the later is beneficial. The use of retention pit should hence be considered with caution in practical applications.
Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity
May 2021
Publication
LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies (2) electricity mix in countries is rapidly changing year after year (3) the electricity mix is strongly fluctuating on an hourly and daily basis which requires time-based allocation approaches and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%) (b) in LCA a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy (c) time-based allocation rules for renewables are required to cope with periods of overproduction (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems and (e) there is an urgent need for a new LCI database based on measured emission data continuously kept up-to-date transparent and open access.
Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers
Mar 2020
Publication
This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e. the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC) due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine avoiding overvoltage during transients which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e. parallel architecture) so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment
Nov 2018
Publication
Diesel generators are currently used as an off-grid solution for backup power but this causes CO2 and GHG emissions noise emissions and the negative effects of the volatile diesel market influencing operating costs. Green hydrogen production by means of water electrolysis has been proposed as a feasible solution to fill the gaps between demand and production the main handicaps of using exclusively renewable energy in isolated applications. This manuscript presents a business case of an off-grid hydrogen production by electrolysis applied to the electrification of isolated sites. This study is part of the European Ely4off project (n◦ 700359). Under certain techno-economic hypothesis four different system configurations supplied exclusively by photovoltaic are compared to find the optimal Levelized Cost of Electricity (LCoE): photovoltaic-batteries photovoltaic-hydrogen-batteries photovoltaic-diesel generator and diesel generator; the influence of the location and the impact of different consumptions profiles is explored. Several simulations developed through specific modeling software are carried out and discussed. The main finding is that diesel-based systems still allow lower costs than any other solution although hydrogen-based solutions can compete with other technologies under certain conditions.
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Overview on Hydrogen Risk Research and Development Activities: Methodology and Open Issues
Jan 2015
Publication
During the course of a severe accident in a light water nuclear reactor large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen (H2) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that despite the installation of PARs it is difficult to prevent at all times and locations the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de Suˆ rete Nucleaire to assess hydrogen risk in nuclear power plants in particular French nuclear power plants the open issues and the ongoing R&D programs related to hydrogen distribution mitigation and combustion.
The Impact of Hydrogen on Mechanical Properties; A New In Situ Nanoindentation Testing Method
Feb 2019
Publication
We have designed a new method for electrochemical hydrogen charging which allows us to charge very thin coarse-grained specimens from the bottom and perform nanomechanical testing on the top. As the average grain diameter is larger than the thickness of the sample this setup allows us to efficiently evaluate the mechanical properties of multiple single crystals with similar electrochemical conditions. Another important advantage is that the top surface is not affected by corrosion by the electrolyte. The nanoindentation results show that hydrogen reduces the activation energy for homogenous dislocation nucleation by approximately 15–20% in a (001) grain. The elastic modulus also was observed to be reduced by the same amount. The hardness increased by approximately 4% as determined by load-displacement curves and residual imprint analysis.
Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles
Jun 2016
Publication
Recent advances on synthesis characterization and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd90Rh10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions as suggested by in situ X-ray diffraction (XRD). Apart from this composition common laboratory techniques such as in situ XRD DSC and PCI failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd75Rh25 and Pd50Rh50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover the hydrogen solubility in these solid solutions is higher with increasing Pd content and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd25Rh75 and Pd10Rh90) only adsorb hydrogen on the developed surface of ultrasmall nanoparticles. In summary in situ characterization techniques carried out at large-scale facilities are unique and powerful tools for in-depth investigation of hydrogen interaction with ultrasmall nanoparticles at local level.
Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels
May 2019
Publication
Hydrogen energy is a possible solution for storage in the future. The resistance of packaging materials such as stainless steels has to be guaranteed for a possible use of these materials as containers for highly pressurized hydrogen. The effect of hydrogen charging on the nucleation and growth of microdamage in two different austenitic stainless steels AISI316 and AISI316L was studied using in situ tensile tests in synchrotron X-ray tomography. Information about damage nucleation void growth and void shape were obtained. AISI316 was found to be more sensitive to hydrogen compared to AISI316L in terms of ductility loss. It was measured that void nucleation and growth are not affected by hydrogen charging. The effect of hydrogen was however found to change the morphology of nucleated voids from spherical cavities to micro-cracks being oriented perpendicular to the tensile axis.
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC
Apr 2020
Publication
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni Fe and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.
Validation of Leading Point Concept in RANS Simulations of Highly Turbulent Lean Syngas-air Flames with Well-pronounced Diffusional-thermal Effects
Jan 2021
Publication
While significant increase in turbulent burning rate in lean premixed flames of hydrogen or hydrogen-containing fuel blends is well documented in various experiments and can be explained by highlighting local diffusional-thermal effects capabilities of the vast majority of available models of turbulent combustion for predicting this increase have not yet been documented in numerical simulations. To fill this knowledge gap a well-validated Turbulent Flame Closure (TFC) model of the influence of turbulence on premixed combustion which however does not address the diffusional-thermal effects is combined with the leading point concept which highlights strongly perturbed leading flame kernels whose local structure and burning rate are significantly affected by the diffusional-thermal effects. More specifically within the framework of the leading point concept local consumption velocity is computed in extremely strained laminar flames by adopting detailed combustion chemistry and subsequently the computed velocity is used as an input parameter of the TFC model. The combined model is tested in RANS simulations of highly turbulent lean syngas-air flames that were experimentally investigated at Georgia Tech. The tests are performed for four different values of the inlet rms turbulent velocities different turbulence length scales normal and elevated (up to 10 atm) pressures various H2/CO ratios ranging from 30/70 to 90/10 and various equivalence ratios ranging from 0.40 to 0.80. All in all the performed 33 tests indicate that the studied combination of the leading point concept and the TFC model can predict well-pronounced diffusional-thermal effects in lean highly turbulent syngas-air flames with these results being obtained using the same value of a single constant of the combined model in all cases. In particular the model well predicts a significant increase in the bulk turbulent consumption velocity when increasing the H2/CO ratio but retaining the same value of the laminar flame speed.
High-Purity and Clean Syngas and Hydrogen Production From Two-Step CH4 Reforming and H2O Splitting Through Isothermal Ceria Redox Cycle Using Concentrated Sunlight
Jul 2020
Publication
The thermochemical conversion of methane (CH4) and water (H2O) to syngas and hydrogen via chemical looping using concentrated sunlight as a sustainable source of process heat attracts considerable attention. It is likewise a means of storing intermittent solar energy into chemical fuels. In this study solar chemical looping reforming of CH4 and H2O splitting over non-stoichiometric ceria (CeO2/CeO2−δ) redox cycle were experimentally investigated in a volumetric solar reactor prototype. The cycle consists of (i) the endothermic partial oxidation of CH4 and the simultaneous reduction of ceria and (ii) the subsequent exothermic splitting of H2O and the simultaneous oxidation of the reduced ceria under isothermal operation at ~1000°C enabling the elimination of sensible heat losses as compared to non-isothermal thermochemical cycles. Ceria-based reticulated porous ceramics with different sintering temperatures (1000 and 1400°C) were employed as oxygen carriers and tested with different methane flow rates (0.1–0.4 NL/min) and methane concentrations (50 and 100%). The impacts of operating conditions on the foam-averaged oxygen non-stoichiometry (reduction extent δ) syngas yield methane conversion solar-to-fuel energy conversion efficiency as well as the effects of transient solar conditions were demonstrated and emphasized. As a result clean syngas was successfully produced with H2/CO ratios approaching 2 during the first reduction step while high-purity H2 was subsequently generated during the oxidation step. Increasing methane flow rate and CH4 concentration promoted syngas yields up to 8.51 mmol/gCeO2 and δ up to 0.38 at the expense of enhanced methane cracking reaction and reduced CH4 conversion. Solar-to-fuel energy conversion efficiency namely the ratio of the calorific value of produced syngas to the total energy input (solar power and calorific value of converted methane) and CH4 conversion were achieved in the range of 2.9–5.6% and 40.1–68.5% respectively.
Interaction of Hydrogen with the Bulk, Surface and Subsurface of Crystalline RuO2 from First Principles
Feb 2021
Publication
Hydrogen and its interaction with metal oxide surfaces is of major importance for a wide range of research and applied fields spanning from catalysis energy storage microelectronics to metallurgy. This paper reviews state of the art of first principles calculations on the well-known ruthenium oxide (RuO2) surface in its (110) orientation and its interaction with hydrogen. In addition to it the paper also fills gaps in knowledge with new calculations and results on the (001) surface. Bulk and surface interactions are thoroughly reviewed. This includes systematic analysis of adsorption sites local agglomeration propensity of hydrogen and migration pathways in which literature data and their potential deviations are explained. We notably discuss novel results on propensity for agglomeration of hydrogen within bulk channels [001] oriented in which the proton-like behavior of adsorbed hydrogen hinders further agglomeration in adjacent channels. The paper brings new insights into the migration pathways on the surface and in bulk both exhibiting preferential diffusion paths along the [001] direction. The paper finally investigates the subsurface region. We show that while the subsurface has more stable sites for adsorption compared to bulk its accessibility from the surface shows prohibitive activation barriers inhibiting penetration into subsurface and bulk. We further calculate and discuss adsorption and penetration processes on the alternative RuO2 (001) surface.
Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides
Feb 2022
Publication
Recently perovskite-type oxides have attracted researchers as new materials for solid hydrogen storage. This paper presents the performances of perovskite-type oxide LaCrO3 dedicated for hydrogen solid storage using both numerical and experimental methods. Ab initio calculations have been used here with the aim to investigate the electronic mechanical and elastic properties of LaCrO3Hx (x = 0 6) for hydrogen storage applications. Cell parameters crystal structures and mechanical properties are determined. Additionally the cohesive energy indicates the stability of the hydride. Furthermore the mechanical properties showed that both compounds (before and after hydrogenation) are stable. The microstructure and storage capacity at different temperatures of these compounds have been studied. We have shown that storage capacities are around 4 wt%. The properties obtained from this type of hydride showed that it can be used for future applications. XRD analysis was conducted in order to study the structural properties of the compound. Besides morphological thermogravimetric analysis was also conducted on the perovskite-type oxide. Finally a comparison of these materials with other hydrides used for hydrogen storage was carried out.
Main Hydrogen Production Processes: An Overview
May 2021
Publication
Due to its characteristics hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources both of fossil and renewable origin and with as many production processes which can use renewable or non-renewable energy sources. To achieve carbon neutrality the sources must necessarily be renewable and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized mainly focusing on renewable feedstocks furthermore a series of relevant articles published in the last year are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
Effects of Hydrogen Addition on Design, Maintenance and Surveillance of Gas Networks
Jul 2021
Publication
Hydrogen when is blended with natural gas over time degrades the materials used for pipe transport. Degradation is dependent on the proportion of hydrogen added to the natural gas. The assessment is made according to hydrogen permeation risk to the integrity of structures adaptation of surveillance and maintenance of equipment. The paper gives a survey of HE and its consequence on the design and maintenance. It is presented in a logical sequence: the design before use; the hydrogen embrittlement (HE) effects on Maximum Allowable Operating Pressure (MAOP); maintenance and surveillance during use of smooth and damaged pipes; and particularly for crack-like defects corrosion defects and dents.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
Blowout Prediction on a Salt Cavern Selected for a Hydrogen Storage Pilot
Oct 2022
Publication
To prevent climate change Europe and the world must shift to low-carbon and renewable energies. Hydrogen as an energy vector provides viable solutions for replacing polluting and carbon-emitting fossil fuels. Gaseous hydrogen can be stored underground and coupled with existing natural gas pipe networks. Salt cavern storage is the best suited technology to meet the challenges of new energy systems. Hydrogen storage caverns are currently operated in the UK and Texas. A preliminary risk analysis dedicated to underground hydrogen salt caverns highlighted the importance of containment losses (leaks) and the formation of gas clouds following blowouts whose ignition may generate dangerous phenomena such as jet fires unconfined vapor cloud explosions (UVCEs) or flashfires. A blowout is not a frequent accident in gas storage caverns. A safety valve is often set at a 30 m depth below ground level; it is automatically triggered following a pressure drop at the wellhead. Nevertheless a blowout remains to be one of the significant accidental scenarios likely to occur during hydrogen underground storage in salt caverns. In this paper we present modelling the subterraneous and aerial parts of a blowout on an EZ53 salt cavern fully filled with hydrogen.
Circular Economy for the Energy System as a Leverage for Low-carbon Transition: Long-Ter, Analysis of the Case of the South-East Region of France
Mar 2024
Publication
The circular economy is a decisive strategy for reconciling economic development and the environment. In France the CE was introduced into the law in 2015 with the objective of closing the loop. The legislation also delegates energy policy towards the French regions by granting them the jurisdiction to directly plan the energy–climate issues on their territory and to develop local energy resources. Thereby the SUD PACA region has redefined its objectives and targeted carbon neutrality and the transition to a CE by 2050. To study this transition we developed a TIMESPACA optimization model. The results show that following a CE perspective to develop a local energy system could contribute to reducing CO2 emissions by 50% in final energy consumption and reaching almost free electricity production. To obtain greater reductions the development of the regional energy systems should follow a careful policy design favoring the transition to low energy-consuming behavior and the strategical allocation of resources across the different sectors. Biomethane should be allocated to the buildings and industrial sector while hydrogen should be deployed for buses and freight transport vehicles.
Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis
May 2022
Publication
Currently hydrogen is mainly generated by steam methane reforming with significant CO2 emissions thus exacerbating the greenhouse effect. This environmental concern promotes methane cracking which represents one of the most promising alternatives for hydrogen production with theoretical zero CO/CO2 emissions. Methane cracking has been intensively investigated using metallic and carbonaceous catalysts. Recently research has focused on methane pyrolysis in molten metals/salts to prevent both reactor coking and rapid catalyst deactivation frequently encountered in conventional pyrolysis. Another expected advantage is the heat transfer improvement due to the high heat capacity of molten media. Apart from the reaction itself that produces hydrogen and solid carbon the energy source used in this endothermic process can also contribute to reducing environmental impacts. While most researchers used nonrenewable sources based on fossil fuel combustion or electrical heating concentrated solar energy has not been thoroughly investigated to date for pyrolysis in molten media. However it could be a promising innovative pathway to further improve hydrogen production sustainability from methane cracking. After recalling the basics of conventional catalytic methane cracking and the developed solar cracking reactors this review delves into the most significant results of the state-of-the-art methane pyrolysis in melts (molten metals and salts) to show the advantages and the perspectives of this new path as well as the carbon products’ characteristics and the main factors governing methane conversion.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II
Jun 2022
Publication
Biomass gasification is a versatile thermochemical process that can be used for direct energy applications and the production of advanced liquid and gaseous energy carriers. In the present work the results are presented concerning the H2 production at a high purity grade from biomass feedstocks via steam/oxygen gasification. The data demonstrating such a process chain were collected at an innovative gasification prototype plant coupled to a portable purification system (PPS). The overall integration was designed for gas conditioning and purification to hydrogen. By using almond shells as the biomass feedstock from a product gas with an average and stable composition of 40%-v H2 21%-v CO 35%-v CO2 2.5%-v CH4 the PPS unit provided a hydrogen stream with a final concentration of 99.99%-v and a gas yield of 66.4%.
THyGA - Tightness Testing of Gas Distribution Components in 40%H2+60%CH4
Aug 2022
Publication
The present work is concerned with the evaluation of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance in presence of a mixture 40%H2+60%CH4 at 35 mbar. The components were taken from installations being used currently in Germany Denmark Belgium and France. The current standard methods to evaluate natural gas distribution tightness propose testing duration of several minutes. In this work the components tightness was first evaluated using such standard methods before carrying out tests on longer period of time and evaluate the potential influence of time and the results were compared to admissible leakage rates for natural gas in distribution network and in appliances.
Renewable Hydrogen Production Processes for the Off-Gas Valorization in Integrated Steelworks through Hydrogen Intensified Methane and Methanol Syntheses
Nov 2020
Publication
Within integrated steelmaking industries significant research efforts are devoted to the efficient use of resources and the reduction of CO2 emissions. Integrated steelworks consume a considerable quantity of raw materials and produce a high amount of by-products such as off-gases currently used for the internal production of heat steam or electricity. These off-gases can be further valorized as feedstock for methane and methanol syntheses but their hydrogen content is often inadequate to reach high conversions in synthesis processes. The addition of hydrogen is fundamental and a suitable hydrogen production process must be selected to obtain advantages in process economy and sustainability. This paper presents a comparative analysis of different hydrogen production processes from renewable energy namely polymer electrolyte membrane electrolysis solid oxide electrolyze cell electrolysis and biomass gasification. Aspen Plus® V11-based models were developed and simulations were conducted for sensitivity analyses to acquire useful information related to the process behavior. Advantages and disadvantages for each considered process were highlighted. In addition the integration of the analyzed hydrogen production methods with methane and methanol syntheses is analyzed through further Aspen Plus®-based simulations. The pros and cons of the different hydrogen production options coupled with methane and methanol syntheses included in steelmaking industries are analyzed
No more items...