France
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Influence of the Location of a Buoyant Gas Release in Several Configurations Varying the Height of the Release and the Geometry of the Enclosure
Sep 2013
Publication
The present work proposes a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated enclosure. Several configurations were experimentally addressed in order to improve knowledge on dispersion considering conditions close to hydrogen energy systems in terms of operating characteristics and design. Thus the varying parameters of the study were mainly the height of the release and also the releasing flow rate the volume and the geometry of the enclosure. Experimental results were compared to existing analytical models and considered through model improvements allowing a better approach of these specific cases for hydrogen systems risk assessment.
Impact of Mechanical Ventilation on Build-up and Concentration Distribution Inside a 1-m3 Enclosure Considering Hydrogen Energy
Sep 2019
Publication
Natural ventilation is an efficient and well-known way to mitigate a hydrogen build-up in the case of an accidental release in confined enclosures. However for some hydrogen energy applications natural ventilation is not possible or is not efficient enough to reach defined safety strategy. Thus mechanical or forced ventilation can be interesting means to avoid critical concentration of hydrogen considering degraded operation and associated potential hazardous events. To better understand the impact of mechanical ventilation on the hydrogen build-up and distribution a dedicated study was led. First accidental release scenarios were experimentally simulated with helium in a 1-m3 enclosure. Several configurations of release and ventilation modes were tested and are presented in this study. Secondly analytical and numerical – Computational Fluid Dynamics – calculation approaches were applied and adjusted to propose a simplified methodology taking into account mechanical ventilation for assessment of hydrogen accumulation and for design optimization of the applications.
Numerical Simulation of the Helium Dispersion in a Semi-confined Air-filled Cavity
Sep 2013
Publication
This paper deals with the build-up of concentration when a continuous source of helium is supplied in an air-filled enclosure. Our aim is to reproduce the results of a small-scale experimental study. To begin with the size of the experiment is reduced from 1/10 to 3/5 for the present analysis. Hypotheses are made in order to reduce the dimension of the real problem. Numerical simulations are carried out on fine grids without any turbulence modelling. The flow structure and the concentration profile of the resulting flow are analyzed and compared with theoretical results.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
CFD design of protective walls against the effects of vapor cloud fast deflagration of hydrogen
Oct 2015
Publication
Protective walls are a well-known and efficient way to mitigate overpressure effects of accidental explosions (detonation or deflagration). For detonation there are multiple published studies whereas for deflagration no well-adapted and rigorous method has been reported in the literature. This article describes the validation of a new modelling approach for fast deflagrations of H2. This approach includes two steps. At the first step the combustion phase of vapor cloud explosion (VCE) involving a fast deflagration is substituted by equivalent vessel burst problem. The purpose of this step is to avoid the reactive flow computations. At the second step CFD is used for computations of pressure propagation from the equivalent (non reactive) vessel burst problem. After verifying the equivalence of the fast deflagration and the vessel burst problem at the first step the capability of two CFD codes such as FLACS and Europlexus are examined for modelling of the vessel burst problem (with and without barriers). Finally the efficiency of finite and infinite barriers used for mitigation of the shock is investigated
Safety Cost of a Large Scale Hydrogen System for Photovoltaic Energy Regulation
Sep 2011
Publication
Hydrogen can be used as a buffer for storing intermittent electricity produced by solar plants and/or wind farms. The MYRTE project in Corsica France aims to operate and test a large scale hydrogen facility for regulating the electricity produced by a 560 kWp photovoltaic plant.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Hydrogen Ironmaking: How It Works
Jul 2020
Publication
A new route for making steel from iron ore based on the use of hydrogen to reduce iron oxides is presented detailed and analyzed. The main advantage of this steelmaking route is the dramatic reduction (90% off) in CO2 emissions compared to those of the current standard blast-furnace route. The first process of the route is the production of hydrogen by water electrolysis using CO2-lean electricity. The challenge is to achieve massive production of H2 in acceptable economic conditions. The second process is the direct reduction of iron ore in a shaft furnace operated with hydrogen only. The third process is the melting of the carbon-free direct reduced iron in an electric arc furnace to produce steel. From mathematical modeling of the direct reduction furnace we show that complete metallization can be achieved in a reactor smaller than the current shaft furnaces that use syngas made from natural gas. The reduction processes at the scale of the ore pellets are described and modeled using a specific structural kinetic pellet model. Finally the differences between the reduction by hydrogen and by carbon monoxide are discussed from the grain scale to the reactor scale. Regarding the kinetics reduction with hydrogen is definitely faster. Several research and development and innovation projects have very recently been launched that should confirm the viability and performance of this breakthrough and environmentally friendly ironmaking process.
Safety Strategy for the First Deployment of a Hydrogen- Based Green Public Building in France
Sep 2011
Publication
HELION a subsidiary of AREVA in charge of the business unit Hydrogen and energy storage is deploying for the first time in a French public building a hydrogen-based energy storage system the Greenergy Box™. The 50 kWe system is coupled with a photovoltaic farm to ensure up to 45% electrical autonomy and power backup to the building. The safety system and siting measures of the complete hydrogen chain are described. The paper also highlights the work accomplished with Fire Authorities and Public to gain the acceptance of the project and allow the deployment of four other hydrogen-based green buildings.
Hydrogen Storage - Recent Improvements and Industrial Prospectives
Sep 2013
Publication
This paper gives a historical and technical overview of hydrogen storage vessels and details the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70s. Aluminum cylinders were also used for hydrogen storage since the end of the 60s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80s. Because of their low weight they started to be used in for portable applications for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 1 000 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure
Sep 2011
Publication
We present an experimental study on the dispersion of helium in an enclosure of 1 m3 with natural ventilation through one vent. Three vent geometries have been studied. Injection parameters have been varied so that the injection Richardson number ranges from 2·10−6 to 9 and the volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 8·10−4 to 900. It has been found that the vertical distribution of helium volume fraction can exhibit significant gradient. Nevertheless the results are compared to the simple analytical model based on the homogenous mixture hypothesis which gives fairly good estimates of the maximum helium volume fraction.
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2017
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
Application of Natural Ventilation Engineering Models to Hydrogen Build Up in Confined Zones
Sep 2013
Publication
Correlative engineering models (Linden 1994) are compared to recent published (Cariteau et al. (2009) Pitts et al. (2009) Barley and Gawlick (2009) Swain et al. (1999) Merilo et al. (2010)) and unpublished (CEA experiments in a 1 m3 with two openings) experimental hydrogen or helium distribution in enclosures (with one and two openings). The modelling-experiments comparison is carried out in transient and in steady state conditions. On this basis recommendations and limits of use of these models are proposed.
Turbulent Flame Propagation in Large Unconfined H2/O2/N2 Clouds
Oct 2015
Publication
Turbulence is a key aspect in hydrogen explosions. Unfortunately only limited experimental data is available and the current understanding of flame turbulence interactions is too limited to permit safe predictions. New experimental data are presented in which the flame trajectory and pressure history are interpreted for unconfined explosions of H2/O2/N2 clouds of 7 m3. The intensity of the turbulence is varied between 0 and 5 m/s and the integral scale of the turbulence is on the order of 10 cm which is at least an order of magnitude larger than lab scale.
Hydrogen Related Risks Within a Private Garage: Concentration Measurements in a Realistic Full Scale Experimental Facility
Sep 2007
Publication
Next generation of hydrogen energy based vehicles is expected to come into widespread use in the near future. Various topics related to hydrogen including production storage and application of hydrogen as an energy carrier have become subjects of discussion in the framework of various European and International projects. Safety information is vital to support the successful introduction into mainstream and public acceptance of hydrogen as an energy carrier. One of such issues which is seeking major attention is related to hydrogen powered vehicles parked inside a confined area (such as in a private garage). It is of utmost importance to predict if uncontrolled release of hydrogen from a vehicle parked inside a confined area can create an explosive atmosphere. Subsequently how the preventive measures can be implied to control these explosive atmospheres if present inside a confined area? There is a little guidance currently developed for confined areas accommodating hydrogen fuelled vehicles. It is essential that mitigation measures for such conditions become established.<br/>Characterization of different scenarios those may arise in a real situation from hydrogen fuelled vehicle parked inside a garage and furthermore the investigation of an optimal ventilation rate for hydrogen risk mitigation are some of the main objectives described in the framework of the present study. This work is an effort to provide detail experimental information’s in view of establishing guidelines for hydrogen powered vehicles parked inside a private garage. The present work is developed in the framework of a European Network of Excellence HySafe and French project DRIVE. Present paper describes a purpose built realistic Garage test facility at CEA to study the dispersion of hydrogen leakage. The studied test cases evaluate the influence of injected volumes of hydrogen and the initial conditions at the leakage source on the dispersion and mixing characteristics inside the free volume of the unventilated garage. The mixing process and build-up of hydrogen concentration is measured for the duration of 24 hours. Due to safety reasons helium gas is used to simulate the hydrogen dispersion characteristics.
Effect of the Time Dependent Loading of Type IV Cylinders Using a Multi-scalemodel
Sep 2019
Publication
The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures that the designed burst pressure should be at least 2.5 times the maximum in-service pressure. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a MonteCarlo analysis of the burst test results. To enrich this study more experiments are required however they are normally limited by the necessity of long duration testing times (loading rate and number of cylinders) and the design (stacking sequence of the composite layer). A multi-scale model incorporating the micromechanical behaviour of composite structures has been developed at Mines ParisTech. The model has shown similar behaviour to that of composite cylinders under different loading rates. This indicates that the model could assist the Monte-Carlo analysis study. An evaluation of the multi-scale model therefore has been carried out to determine its limitations in predicting lifetimes of composite cylinders. The evaluation starts with the comparison of burst pressures with type IV composite cylinders under different loading rates. A μCT-Scan of a type IV cylinder has been carried out at the University of Southampton. The produced images were analysed using the Fast-Fourier Transform (FFT) technique to determine the configuration of the composite layers which is required by the model. Finally the time dependent effect studied by using the multi scale model has been described. In the long-term this study can be used to conduct a parametric study for creating more efficient design of type IV cylinders.
An Experimental Study Dedicated to Wind Influence on Helium Build-up and Concentration Distribution Inside a 1 m 3 Semi-confined Enclosure Considering Hydrogen Energy Applications Conditions of Use
Oct 2015
Publication
Hydrogen energy applications can be used outdoor and thus exposed to environmental varying conditions like wind. In several applications natural ventilation is the first mitigation means studied to limit hydrogen build-up inside a confined area. This study aims at observing and understanding the influence of wind on light gas build-up in addition. Experiments were performed with helium as releasing gas in a 1-m 3 enclosure equipped with ventilation openings varying wind conditions openings location release flow rate; obstructions in front of the openings to limit effects of wind were studied as well. Experimental results were compared together and with the available analytical models.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Hazard Distance Nomograms for a Blast Wave from a Compressed Hydrogen Tank Rupture in a Fire
Sep 2017
Publication
Nomograms for assessment of hazard distances from a blast wave generated by a catastrophic rupture of stand-alone (stationary) and onboard compressed hydrogen cylinder in a fire are presented. The nomograms are easy to use hydrogen safety engineering tools. They were built using the validated and recently published analytical model. Two types of nomograms were developed – one for use by first responders and another for hydrogen safety engineers. The paper underlines the importance of an international effort to unify harm and damage criteria across different countries as the discrepancies identified by the authors gave the expected results of different hazard distances for different criteria.
Full Scale Experimental Campaign to Determine the Actual Heat Flux Produced by Fire on Composite Storages - Calibration Tests on Metallic Vessels
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it’s important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Cylinders and Tubes Used as Buffers in Filling Stations
Oct 2015
Publication
Buffers are key components for hydrogen filling stations that are currently being developed. Type 1 or composite cylinders are used for this application. The type used depends on many parameters including pressure level cost and space available for the filling station. No international standards exist for such high pressure vessels whereas many standards exist covering Types 123 and 4 used for transport of gas or on-board fuel tanks. It is suggested to use the cylinders approved for transport or on-board applications as buffers. This solution appears to be safe if at least one issue is solved. The main difference is that transport or on-board cylinders are cycled from a low pressure to a high pressure during service whereas buffers are cycled from a relatively high pressure (corresponding to the vehicle’s filling pressure) to the MAWP. Another difference is that buffers are cycled many times per day. For standards developers requesting to systematically verify that buffers pass millions of cycles at low pressure amplitude would be impractical. Several standards and codes give formulae to estimate the number of shallow cycles when number of deep cycles are known. In this paper we describe tests performed on all types of composite cylinders to verify or determine the appropriate formulae.
Application of Reactive Discrete Equation Method to the ENACCEF Test 13h
Sep 2011
Publication
The Reactive Discrete Equation Method (RDEM) was recently introduced in [12] adapted to combustion modelling in [3] and implemented in the TONUS code [4]. The method has two major features: the combustion constant having velocity dimension is the fundamental flame speed and the combustion wave now is an integral part of the Reactive Riemann Problem. In the present report the RDEM method is applied to the simulation of the combustion Test 13H performed in the ENACCEF facility. Two types of computations have been considered: one with a constant fundamental flame speed the other with time dependent fundamental flame speed. It is shown that by using the latter technique we can reproduce the experimental visible flame velocity. The ratio between the fundamental flame speed and the laminar flame speed takes however very large values compared to the experimental data based on the tests performed in spherical bombs or cruciform burner.
Numerical Investigation of a Mechanical Device Subjected to a Deflagration-to-detonation Transition
Sep 2011
Publication
In this work we evaluate the consequences of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device which can be considered as a long tube. In order to choose the most dangerous combustion regime for the mechanical device we devote a particular attention to the investigation of the 1D deflagration-to-detonation transition. Then once established the most dangerous combustion regime we compute the reacting flow and the stress and strain in the mechanical device. Analyses are performed using both semi-analytical solutions and Europlexus a computer program for the simulation of fluid-structure systems under transient dynamic loading.
Risk Assessment of Hydrogen Explosion for Private Car with Hydrogen-driven Engine
Sep 2009
Publication
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry wind etc.) therefore the different configurations of operational and environmental conditions are specified.<br/>Then Event Tree/Fault Tree methods are applied for the risk assessment.<br/>The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.
Influence of Initial Pressure in Hydrogen/Air flame Acceleration During Severe Accident in Nuclear Power Plant
Sep 2017
Publication
Flame acceleration (FA) and explosion of hydrogen/air mixtures remain key issues for severe accident management in nuclear power plants. Empirical criteria were developed in the early 2000s by Dorofeev and colleagues providing effective tools to discern possible FA or DDT (Deflagration-to-Detonation Transition) scenarios. A large experimental database composed mainly of middle-scale experiments in obstacle-laden ducts at atmospheric pressure condition has been used to validate these criteria. However during a severe accident the high release rate of steam and non-condensable gases into the containment can result in pressure increase up to 5 bar abs. In the present work the influence of the unburnt gas initial pressure on flame propagation mechanisms was experimentally investigated. Premixed hydrogen/air mixtures with hydrogen concentration close to 11% and 15% were considered. From the literature we know that these flames are supposed to accelerate up to Chapman-Jouguet deflagration velocity in long obstacle-laden tubes at initial atmospheric conditions. Varying the pressure in the fresh gas in the range 0.6–4 bar no effects on the flame acceleration phase were observed. However as the initial pressure was increased we observed a decrease in the flame velocity close to the end of the tube. The pressure increase due to the combustion reaction was found to be proportional to the initial pressure according to adiabatic isochoric complete combustion.
The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances
Jan 2022
Publication
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply e.g. as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system burner design and other boundary conditions these changes may cause higher combustion temperatures and laminar combustion velocities while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas these effects may cause risk of flashback reduced operational safety material deterioration higher nitrogen oxides emissions (NOx) and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Fire Risk on High-pressure Full Composite Cylinders for Automotive Applications
Sep 2011
Publication
In the event of a fire the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However there is no requirement concerning the effect of the TPRD release which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.
An Extended Flamelet-based Presumed Probability Density Function for Predicting Mean Concentrations of Various Species in Premixed Turbulent Flames
Sep 2020
Publication
Direct Numerical Simulation (DNS) data obtained by Dave and Chaudhuri (2020) from a lean complex-chemistry hydrogen-air flame associated with the thin-reaction-zone regime of premixed turbulent burning are analyzed to perform a priori assessment of predictive capabilities of the flamelet approach for evaluating mean species concentrations. For this purpose dependencies of mole fractions and rates of production of various species on a combustion progress variable c obtained from the laminar flame are averaged adopting either the actual Probability Density Function (PDF) P (c) extracted from the DNS data or a common presumed β-function PDF. On the one hand the results quantitatively validate the flamelet approach for the mean mole fractions of all species including radicals but only if the actual PDF P (c) is adopted. The use of the β-function PDF yields substantially worse results for the radicals’ concentrations. These findings put modeling the PDF P (c) on the forefront of the research agenda. On the other hand the mean rate of product creation and turbulent burning velocity are poorly predicted even adopting the actual PDF. These results imply that in order to evaluate the mean species concentrations the flamelet approach could be coupled with another model that predicts the mean rate and turbulent burning velocity better. Accordingly the flamelet approach could be implemented as post-processing of numerical data yielded by that model. Based on the aforementioned findings and implications a new approach to building a presumed PDF is developed. The key features of the approach consist in (i) adopting a re-normalized flamelet PDF for intermediate values of c and (ii) directly using the mean rate of product creation to calibrate the presumed PDF. Capabilities of the newly developed PDF for predicting mean species concentrations are quantitively validated for all species including radicals.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
LES Simulation of Buoyancy Jet From Unintended Hydrogen Release with GASFLOW-MPI
Sep 2017
Publication
Hydrogen leakage is a key safety issue for hydrogen energy application. For hydrogen leakage hydrogen releases with low momentum hence the development of the leakage jet is dominated by both initial momentum and buoyancy. It is important for a computational code to capture the flow characteristics transiting from momentum-dominated jet to buoyancy dominated plume during leakage. GASFLOW-MPI is a parallel computational fluid dynamics (CFD) code which is well validated and widely used for hydrogen safety analysis. In this paper its capability for small scale hydrogen leakage is validated with unintended hydrogen release experiment. In the experiment pure hydrogen is released into surrounding stagnant air through a jet tube on a honeycomb plate with various Froude numbers (Fr). The flow can be fully momentum-dominated at the beginning while the influence of buoyancy increases with the Fr decreases along the streamline. Several quantities of interest including velocity along the centerline radial profiles of the time-averaged H2 mass fraction are obtained to compare with experimental data. The good agreement between the numerical results and the experimental data indicates that GASFLOW-MPI can successfully simulate hydrogen turbulent dispersion driven by both momentum and buoyant force. Different turbulent models i.e. k-ε LES and DES model are analyzed for code performance the result shows that all these three models are adequate for hydrogen leakage simulation k-ε simulation is sufficient for industrial applications while LES model can be adopted for detail analysis for a jet/plume study like entrainment. The DES model possesses both characters of the former two model only the performance of its result depends on the grid refinement.
Vented Explosion of Hydrogen/Air Mixture: An Inter Comparison Benchmark Exercise
Sep 2017
Publication
Explosion venting is a widely used mitigation solution in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by accidental explosions. However vented explosions are very complicated to model using computational fluid dynamics (CFD). In the framework of a French working group the main target of this investigation is to assess the predictive capabilities of five CFD codes used by five different organizations by means of comparison with recent experimental data. On this basis several recommendations for the CFD modelling of vented explosions are suggested.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Some Issues Concerning the CFD Modelling of Confined Hydrogen Releases
Sep 2017
Publication
In SUSANA E.U. project a rather broad CFD benchmarking exercise was performed encompassing a number of CFD codes a diversity of turbulence models... It is concluded that the global agreement is good. But in this particular situation the experimental data to compare with were known to the modelers. In performing this exercise the present authors explored the influence of some modelling choices which may have a significant impact on the results (apart from the traditional convergence testing and mass conservation) especially in the situation where little relevant data are available. The configuration investigated is geometrically simple: a vertical round hydrogen jet in a square box. Nevertheless modelling aspects like the representation of the source and of the boundary conditions have a rather strong influence on the final results as illustrated in this communication. In other words the difficulties may not be so much in the intrinsic capabilities of the code (which SUSANA tends to show) but more in the physical representation the modelers have. Even in the specific situation addressed in this communication although looking simple it may not be so obvious to grasp correctly the leading physical processes.
Experimental Measurements, CFD Simulations and Model for a Helium Release in a Two Vents Enclosure
Sep 2017
Publication
The present work proposes improvements on a model developed by Linden to predict the concentration distribution in a 2 vented cavities. Recent developments on non constant entrainment coefficient from Carazzo et al as well as a non constant pressure distribution at the vents-the vents being vertical-are included in the Linden approach. This model is compared with experimental results from a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated 2 vents enclosure. The varying parameters of the study were mainly the height of the release the releasing flow rate and the geometry of the vents. At last Large Eddy Simulations of the flow and Particle Image Velocimetry measurements performed on a small 2 vented cavity are presented. The objective is to have a better understanding of the flow structure which is at the origin of the 2 layers concentration distribution described by Linden.
Defect Assessment on Pipe Used For Transport of Mixture of Hydrogen and Natural Gas
Sep 2009
Publication
The present article indicates the change of mechanical properties of X52 gas pipe steel in presence of hydrogen and its consequence on defect assessment particularly on notch like defects. The purpose of this work is to determine if the transport of a mixture of natural gas and hydrogen in the actual existing European natural gas pipe network can be done with a reasonable low failure risk (i.e. a probability of failure less than 10-6). To evaluate this risk a deterministic defect assessment method has been established. This method is based on Failure Assessment Diagram and more precisely on a Modified Notch Failure Assessment Diagram (MNFAD) which has been proposed for this work. This MNFAD is coupled with the SINTAP failure curve and allows determining the safety factor associated with defect geometry loading conditions and material resistance. The work described in this paper was performed within the NATURALHY work package 3 on ’Durability of pipeline material’.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
Optimized EMS and a Comparative Study of Hybrid Hydrogen Fuel Cell/Battery Vehicles
Jan 2022
Publication
This paper presents a new Fuel Cell Fuel Consumption Minimization Strategy (FCFCMS) for Hybrid Electric Vehicles (HEVs) powered by a fuel cell and an energy storage system in order to minimize as much as possible the consumption of hydrogen while maintaining the State Of Charge (SOC) of the battery. Compared to existing Energy Management Strategies (EMSs) (such as the well-known State Machine Strategy (SMC) Fuzzy Logic Control (FLC) Frequency Decoupling and FLC (FDFLC) and the Equivalent Consumption Minimization Strategy (ECMS)) the proposed strategy increases the overall vehicle energy efficiency and therefore minimizes the total hydrogen consumption while respecting the constraints of each energy and power element. A model of a hybrid vehicle has been built using the TruckMaker/MATLAB software. Using the Urban Dynamometer Driving Schedule (UDDS) which includes several stops and accelerations the performance of the proposed strategy has been compared with these different approaches (SMC FLC FDFLC and ECMS) through several simulations.
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Review of Methods For Estimating the Overpressure and Impulse Resulting From a Hydrogen Explosion in a Confined/Obstructed Volume
Sep 2009
Publication
This study deals with the TNO Multi-Energy and Baker-Strehlow-Tang (BST) methods for estimating the positive overpressures and positive impulses resulting from hydrogen-air explosions. With these two methods positive overpressure and positive impulse results depend greatly on the choice of the class number for the TNO Multi-Energy method or the Mach number for the BST methods. These two factors permit the user to read the reduced parameters of the blast wave from the appropriate monographs for each of these methods i.e. positive overpressure and positive duration phase for the TNO Multi-Energy method and positive overpressure and positive impulse for the BST methods. However for the TNO Multi-Energy method the determination of the class number is not objective because it is the user who makes the final decision in choosing the class number whereas with the BST methods the user is strongly guided in their choice of an appropriate Mach number. These differences in the choice of these factors can lead to very different results in terms of positive overpressure and positive impulse. Therefore the objective of this work was to compare the positive overpressures and positive impulses predicted with the TNO Multi-Energy and BST methods with data available from large-scale experiments.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
No more items...