Ethiopia
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
On the Design and Optimization of Distributed Energy Resources for Sustainable Grid-integrated Microgrid in Ethiopia
Apr 2023
Publication
This paper presents a study that focuses on alleviating the impacts of grid outages in Ethiopia. To deal with grid outages most industrial customers utilize backup diesel generators (DG) which are environmentally unfriendly and economically not viable. Grid integration of hybrid renewable energy systems (HRES) might be a possible solution to enhance grid reliability and reduce environmental and economic impacts of utilizing DG. In this study an optimization of grid integrated HRES is carried out for different dispatch and control strategies. The optimal power supply option is determined by performing comparative analysis of the different configurations of grid integrated HRES. The result of the study shows that grid integrated HRES consisting of photovoltaic and wind turbine as renewable energy sources and battery and hydrogen as hybrid energy storage systems is found to be the optimal system to supply the load demand. From the hydrogen produced on-site the FC generator and FCEVs consume 143 620 kg/yr of hydrogen which is equivalent to 394 955 kg/yr gasoline fuel consumption. This corresponds to saving 1 184 865 kg/yr of CO2 emissions and 605 703 $/yr revenue. Besides this system yields 547 035.4 $/yr revenue by injecting excess electricity to the grid. The study clearly shows the economic and environmental viability of this new technology for implementation.
No more items...