Germany
Evaluation of Optical and Spectroscopic Experiments of Hydrogen Jet Fires
Sep 2009
Publication
This paper reports results of evaluating joint experiments under the work programme of Hysafe occurring at HSL who provided the test facilities and basic measurements to generate jet fires whereas Fraunhofer ICT applied their equipment to visualise the jet fires by fast video techniques IR-cameras and fast scanning spectroscopy in the NIR/IR spectral region. Another paper describes the experimental set up and main findings of flame structures and propagation resolved in time. The spatial distribution of species and temperate as well as their time history and fluctuations give a basis of the evaluation of effects caused by such jet fires. Fraunhofer ICT applied their comprehensive evaluation codes to model the radiation emission from 3-atomic species in the flame especially H2O in the Infrared spectral range. The temperatures of the hydrogen flame were about 2000 K as found by least squares fit of the measured molecular bands by the codes. In comparison with video and thermo camera frames these might enable to estimate on a qualitative level species distribution and air entrainment and temperatures to identify hot and reactive zones. The risk analysis could use this information to estimate heat transfer and the areas of risk to direct inflammation from the jet fires by semi-empirical approaches.
Composite Gas Cylinders Probabilistic Analysis of Minimum Burst and Load Cycle Requirements
Oct 2015
Publication
Gas cylinders made of composite materials receive growing popularity in light-weight applications. Current standards are mostly based on safety determination relying on minimum amounts of endured load cycles and a minimum burst pressure of a small number of specimens. This paper investigates the possibilities of a probabilistic strength assessment for safety improvements as well as cost and weight savings. The probabilistic assessment is based on destructive testing of small sized samples. The influence of sample size on uncertainty of the assessment is analysed. Furthermore methods for the assessment of in-service ageing (degradation) are discussed and displayed in performance charts.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Venting Deflagrations of Local Hydrogen-air Mixture
Oct 2015
Publication
The paper describes a lumped-parameter model for vented deflagrations of localised and layered fuel air mixtures. Theoretical model background is described to allow insight into the model development with focus on lean mixtures and overpressures significantly below 0.1 MPa for protection of low strength equipment and buildings. Phenomena leading to combustion augmentation was accounted based on conclusions of recent CFD studies. Technique to treat layered mixtures with concentration gradient is demonstrated. The model is validated against 25 vented deflagration experiments with lean non-uniform and layered hydrogen-air mixtures performed in Health and Safety Laboratory (UK) and Karlsruhe Institute of Technology (Germany).
Real-gas Equations-of-State for the GASFLOW CFD Code
Sep 2011
Publication
GASFLOW is a finite-volume computer code that solves the time-dependent two-phase homogeneous equilibrium model compressible Navier–Stokes equations for multiple gas species with turbulence. The fluid-dynamics algorithm is coupled with conjugate heat and mass transfer models to represent walls floors ceilings and other internal structures to describe complex geometries such as those found in nuclear containments and facilities. Recent applications involve simulations of cryogenic hydrogen tanks at elevated pressures. These applications which often have thermodynamic conditions near the critical point require more accurate real-gas Equations-of-State (EoS) and transport properties than the standard ideal gas EoS and classical kinetic-theory transport properties. This paper describes the rigorous implementation of the generalized real-gas EoS into the GASFLOW CFD code as well as the specific implementation of respective real-gas models (Leachman's NIST hydrogen EoS a modified van der Waals EoS and a modified Nobel-Abel EoS); it also includes a logical testing procedure based upon a numerically exact benchmark problem. An example of GASFLOW simulations is presented for an ideal cryo-compressed hydrogen tank of the type utilized in fuel cell vehicles.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Modeling of the Flame Acceleration in Flat Layer for Hydrogen-air Mixtures
Sep 2011
Publication
The flame propagation regimes for the stoichiometric hydrogen-air mixtures in an obstructed semiconfined flat layer have been numerically investigated in this paper. Conditions defining fast or sonic propagation regime were established as a function of the main dimensions characterizing the system and the layout of the obstacles. It was found that the major dependencies were the following: the thickness of the layer of H2-air mixture the blockage ratio and the distance between obstacles and the obstacle size. A parametric study was performed to determine the combination of the above variables prone to produce strong combustions. Finally a criterion that separates experiments resulting in slow subsonic from fast sonic propagations regimes was proposed.
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Ignition and Heat Radiation of Cryogenic Hydrogen Jets
Sep 2011
Publication
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature velocity turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.
Experimental Investigation of Flame and Pressure Dynamics after Spontaneous Ignition in Tube Geometry
Sep 2013
Publication
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe filled with ambient air can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.
Experimental Study of Hydrogen-Air Deflagrations in Flat Layer
Sep 2007
Publication
In the present paper the results of experiments on study of high-speed deflagrations in flat layer of hydrogen-air mixtures unconfined from below are presented. The experiments were performed in two different rectangular channels: small-scale with mixture volume up to 0.4 m3 and large-scale with volume up to 5.5 m3. The main goal of the experiments was to examine the possibility of the layer geometries to maintain high-speed deflagration and detonation. With the aim to study a range of combustion regimes the experiments were performed varying degree of channel obstruction hydrogen concentration and thickness of the layer. Depending on the experimental conditions all major combustion regimes were observed: slow flame fast – ‘choked’ flame and steady-state detonation. It was found that minimum layer layer thickness in the range of 8 to 15 detonation cell widths is required for sustainable detonations.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
Performance Tests of Catalysts for the Safe Conversion of Hydrogen Inside the Nuclear Waste Containers in Fukushima Daiichi
Sep 2019
Publication
The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education Culture Sports Science and Technology of Japan (MEXT) the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification and is characterized by having a self-healing function of precious metals (Pd Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Characterization of Materials in Pressurized Hydrogen Under Cyclic Loading at Service Conditions in Hydrogen Powered Engines
Sep 2005
Publication
A new testing device for cyclic loading of specimens with a novel shape design is presented. The device was applied for investigations of fatigue of metallic specimens under pressurized hydrogen up to 300 bar at temperatures up to 200 °C. Main advantage of the specimen design is the very small amount of medium here hydrogen used for testing. This allows experiments with hazardous substances at lower safety level. Additionally no gasket for the load transmission is required. Woehler curves which show the influence of hydrogen on the fatigue behaviour of austenitic steel specimens at relevant service conditions in hydrogen powered engines are presented. Material and test conditions are in agreement with the cooperating industry.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
Hydrogen Detection- Visualisation of Hydrogen Using Non Invasive Optical Schlieren Technique BOS
Sep 2005
Publication
The detection of hydrogen after its accidental release is not only important for research purposes but will be much more important under safety aspects for future applications when hydrogen should be a standard energy resource. At Fraunhofer ICT two principally different approaches were made: first the new optical background-oriented schlieren method (BOS) is used for the visualization of hydrogen distribution and mixing processes at a rate of up to 1000 frames per second. The results from experiments with small scale injection of hydrogen/air–mixtures into air flows and free jets of hydrogen and hydrogen/air–mixtures emerging from 1” hoses simulating exhaust pipes will be discussed and interpreted with support from selected high speed videos. Finally mixing zones and safety distances can be determined by this powerful method.
Design of Catalytic Recombiners for Safe Removal of Hydrogen from Flammable Gas Mixtures
Sep 2007
Publication
Several today’s and future applications in energy technology bear the risk of the formation of flammable hydrogen/air mixtures either due to the direct use of hydrogen or due to hydrogen appearing as a by-product. If there’s the possibility of hydrogen being released accidentally into closed areas countermeasures have to be implemented in order to mitigate the threat of an explosion. In the field of nuclear safety passive auto-catalytic recombiners (PAR) are well-known devices for reducing the risk of a hydrogen detonation in a nuclear power plant in the course of a severe accident. Hydrogen and oxygen react on catalyst materials like platinum or palladium already far below conventional flammability limits. The most important concern with regard to the utilization of hydrogen recombiners is the adequate removal of the reaction heat. Already low hydrogen concentrations may increase the system temperature beyond the self-ignition limit of hydrogen/air mixtures and may lead to an unintended ignition on hot parts of the PAR.<br/>Starting from the nuclear application since several years IEF-6 and LRST perform joint research in the field of passive auto-catalytic recombiners including experimental studies modelling and development of new design concepts. Recently approaches on specifically designed catalysts and on passive cooling devices have been successfully tested. In a design study both approaches are combined in order to provide means for efficient and safe removal of hydrogen. The paper summarizes results achieved so far and possible designs for future applications.
Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting
Dec 2021
Publication
As an energy-intensive industry sector the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate that the proposed system can reduce specific carbon dioxide emissions by up to 60 % while increasing specific energy demand by a maximum of 25 %. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C) temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study high CO2 abatement costs of 295 €/t CO2-eq. were determined.. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.
No more items...