Germany
Spontaneous Ignition Processes Due To High-Pressure Hydrogen Release in Air
Sep 2011
Publication
Spontaneous ignition processes due to the high-pressure hydrogen releases into air were investigated both experimentally and theoretically. Such processes reproduce accident scenarios of sudden expansion of pressurized hydrogen into the ambient atmosphere in cases of tube or valve rupture. High-pressure hydrogen releases in the range of initial pressures from 20 to 275 bar and with nozzle diameters of 0.5 – 4 mm have been investigated. Glass tubes and high-speed CCD camera were used for experimental study of self-ignition process. The problem was theoretically considered in terms of contact discontinuity for the case when spontaneous ignition of pressurized hydrogen due to the contact with hot pressurized air occurs. The effects of boundary layer and material properties are discussed in order to explain the minimum initial pressure of 25 bar leading to the self-ignition of hydrogen with air.
A New Technology for Hydrogen Safety: Glass Structures as a Storage System
Sep 2011
Publication
The storage of hydrogen poses inherent weight volume and safety obstacles. An innovative technology which allows for the storage of hydrogen in thin sealed glass capillaries ensures the safe infusion storage and controlled release of hydrogen gas under pressures up to 100 MPa. Glass is a non-flammable material which also guarantees high burst pressures. The pressure resistance of single and multiple capillaries has been determined for different glass materials. Borosilicate capillaries have been proven to have the highest pressure resistance and have therefore been selected for further series of advanced testing. The innovative storage system is finally composed of a variable number of modules. As such in the case of the release of hydrogen this modular arrangement allows potential hazards to be reduced to a minimum. Further advantage of a modular system is the arrangement of single modules in every shape and volume dependent on the final application. Therefore the typical locations of storage systems e.g. the rear of cars can be modified or shifted to places of higher safety and not directly involved in crashes. The various methods of refilling and releasing capillaries with compressed hydrogen the increase of burst pressures through pre-treatment as well as the theoretical analysis and experimental results of the resistance of glass capillaries will further be discussed in detail.
The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances
Jan 2022
Publication
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply e.g. as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system burner design and other boundary conditions these changes may cause higher combustion temperatures and laminar combustion velocities while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas these effects may cause risk of flashback reduced operational safety material deterioration higher nitrogen oxides emissions (NOx) and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
Open-source Simulation of the Long-term Diffusion of Alternative Passenger Cars on the Basis of Investment Decisions of Private Persons
Feb 2021
Publication
Numerous studies have shown that a full electrification of passenger cars is needed to stay within the 1.5° C temperature rise. This article deals with the question of how the required shares of alternative vehicles can be achieved by the year 2050. In literature the preferred technology are battery electric vehicles as these are more energy efficient than hydrogen vehicles. To be able to demonstrate how alternative vehicles diffuse into the German market the passenger car investment behavior of private persons was investigated. For this purpose a discrete choice experiment (DCE) with 1921 participants was carried out empirically. The results of the DCE show that the investment costs in particular are important when choosing a vehicle. This is followed by the driving range fuel costs and vehicle type. Less important are the charging infrastructure and CO2 emissions of the vehicle. A CO2 tax is of least importance. The utility values of the DCE were used to simulate future market shares. For this purpose the open-source software Invest was developed and different scenarios were defined and calculated. This paper shows that conservative assumptions on attribute development leave a large gap until full electrification as conventional vehicles still account for around 62% of market shares in 2050. In order to achieve full electrification extreme efforts must be made targeting the technical and economic characteristics of the vehicles but also addressing person-related characteristics such as level of information the subjective norm or the technological risk attitude. A ban on new registrations of combustion engines from 2030 could also lead to a full electrification by 2050. An average annual increase in the market share of alternative vehicles of 2.4 percentage points is needed to achieve full electrification. Other important factors are measures that address the modal shift to other modes of transport (rail public transport car-sharing).
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Experiments on the Combustion Behaviour of Hydrogen-Carbon Monoxide-Air Mixtures
Sep 2019
Publication
As a part of a German nuclear safety project on the combustion behaviour of hydrogen-carbon monoxide-air mixtures small scale experiments were performed to determine the lower flammability limit and the laminar burning velocity of such mixtures. The experiments were performed in a spherical explosion bomb with a free volume of 8.2 litre. The experimental set-up is equipped with a central spark ignition and quartz glass windows for optical access. Further instrumentation included pressure and temperature sensors as well as high-speed shadow-videography. A wide concentration range for both fuel gases was investigated in numerous experiments from the lower flammability limits up to the stoichiometric composition of hydrogen carbon monoxide and air (H2-CO-air) mixtures. The laminar burning velocities were determined from the initial pressure increase after the ignition and by using high-speed videos taken during the experiments.
Optimal Development of Alternative Fuel Station Networks Considering Node Capacity Restrictions
Jan 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years infrastructure modelling for new AFV is an established topic. However as the regulatory focus shifts towards heavy-duty vehicles (HDV) the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required station utilization and station portfolio variety.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Hydrogen-related Challenges for the Steelmaker: The Search for Proper Testing
Jun 2017
Publication
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector including the automotive sector to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970) but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Multistage Risk Analysis and Safety Study of a Hydrogen Energy Station
Sep 2017
Publication
China has plenty of renewable energy like wind power and solar energy especially in the northwest part of the country. Due to the volatile and intermittent characters of the green powers high penetration level of renewable resources could arise grid stabilization problem. Therefore electricity storage is considered as a solution and hydrogen energy storage is proposed. Instead of storing the electricity directly it converts electricity into hydrogen and the energy in hydrogen will be released as needed from gas to electricity and heat. The transformed green power can be fed to the power grid and heat supply network. State Grid Corporation of China carried out its first hydrogen demonstration project. In the demonstration project an alkaline electrolyzer and a PEM hydrogen fuel cell stack are decided as the hydrogen producer and consumer respectively. Hydrogen safety issue is always of significant importance to secure the property. In order to develop a dedicated safety analysis method for hydrogen energy storage system in power industry the risk analysis for the power-to-gas-topower&heat facility was made. The hazard and operability (HAZOP) study and the failure mode and effects analysis (FMEA) are performed sequentially to the installation to identify the most problematic parts of the system in view of hydrogen safety and possible failure modes and consequences. At the third step the typical hydrogen leak accident scenarios are simulated by using computational fluid dynamics (CFD) computer code. The resulted pressure loads of the possibly ignited hydrogen-air mixture in the facility container are estimated conservatively. Important safeguards and mitigation measures are proposed based on the three-stage risk and safety studies.
HySafe European Network of Excellence on Hydrogen Safety
Sep 2005
Publication
Introduction and commercialisation of hydrogen as an energy carrier of the future make great demands on all aspects of safety. Safety is a critical issue for innovations as it influences the economic attractiveness and public acceptance of any new idea or product. However research and safety expertise related to hydrogen is quite fragmented in Europe. The vision of a significant increased use of hydrogen as an energy carrier in Europe could not go ahead without strengthening and merging this expertise. This was the reason for the European Commission to support the launch on the first of March 2004 of a so-called Network of Excellence (NoE) on hydrogen safety: HySafe.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
The Structure and Flame Propagation Regimes in Turbulent Hydrogen Jets
Sep 2009
Publication
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed at the FZK hydrogen test site HYKA. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290K and 80 and 35K with different nozzle diameters and mass flow rates in the range from 0.3 to 6.5 g/s have been investigated. Sampling probe method and laser PIV technique have been used to evaluate distribution of hydrogen concentration and flow velocity along and across the jet axis. High-speed photography (1000 fps) combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the maximum flame velocity and pressure loads can only occur if the hydrogen concentration at the ignition point exceeds 11% of hydrogen in air. In this case the flame propagates in both directions up- and downstream the jet flow whereas in the opposite case the flame propagates only downstream. Such a behavior is consistent with previous experiments according to that the flame is able to accelerate effectively only if the expansion rate σ of the H2-air mixture is higher than a critical value σ* = 3.75 (like for the 11% hydrogen-air mixture). The measured data allow conservative estimates of the safety distance and risk assessment for realistic hydrogen leaks.
Validation of CFD Calculations Against Ignited Impinging Jet Experiments
Sep 2007
Publication
Computational Fluid Dynamics (CFD) tools have been increasingly employed for carrying out quantitative risk assessment (QRA) calculations in the process industry. However these tools must be validated against representative experimental data in order to have a real predictive capability. As any typical accident scenario is quite complex it is important that the CFD tool is able to predict combined release and ignition scenarios reasonably well. However this kind of validation is not performed frequently primarily due to absence of good quality data. For that reason the recent experiments performed by FZK under the HySafe internal project InsHyde (http://www.hysafe.org) are important. These involved vertically upwards hydrogen releases with different release rates and velocities impinging on a plate in two different geometrical configurations. The dispersed cloud was subsequently ignited and pressures recorded. These experiments are important not only for corroborating the underlying physics of any large-scale safety study but also for validating the important assumptions used in QRA. Blind CFD simulations of the release and ignition scenarios were carried out prior to the experiments to predict the results (and possibly assist in planning) of the experiments. The simulated dispersion results are found to correlate reasonably well with experimental data in terms of the gas concentrations. The overpressures subsequent to ignition obtained in the blind predictions could not be compared directly with the experiments as the ignition points were somewhat different but the pressure levels were found to be similar. Simulations carried out after the experiments with the same ignition position as those in the experiments compared reasonably well with the measurements in terms of the pressure level. This agreement points to the ability of the CFD tool FLACS to model such complex scenarios well. Nevertheless the experimental set-up can be considered to be small-scale and less severe than many accidents and real-life situations. Future large-scale data of this type will be valuable to confirm ability to predict large-scale accident scenarios.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
Polymer Composites for Tribological Applications in Hydrogen Environment
Sep 2007
Publication
In the development of hydrogen technology special attention is paid to the technical problems of hydrogen storage. One possible way is cryogenic storage in liquid form. Generally cryo-technical machines need components with interacting surfaces in relative motion such as bearings seals or valves which are subjected to extreme conditions. Materials of such systems have to be resistant to friction-caused mechanical deformation at the surface low temperatures and hydrogen environment. Since materials failure can cause uncontrolled escape of hydrogen new material requirements are involved for these tribo-systems in particular regarding operability and reliability. In the past few years several projects dealing with the influence of hydrogen on the tribological properties of friction couples were conducted at the Federal Institute for Materials Research and Testing (BAM) Berlin. This paper reports some investigations carried out with polymer composites. Friction and wear were measured for continuous sliding and analyses of the worn surfaces were performed after the experiments. Tests were performed at room temperature in hydrogen as well as in liquid hydrogen.
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries
Dec 2022
Publication
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them the following have been identified: concentrating solar power heat pumps and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
Expected Impacts on Greenhouse Gas and Air Pollutant Emissions Due to a Possible Transition Towards a Hydrogen Economy in German Road Transport
Nov 2020
Publication
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical complete transition from conventionally-fuelled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between −179 and +95 MtCO2eq annually depending on the scenario with renewable-powered electrolysis leading to the greatest emissions reduction while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually requiring 446–525 TWh for electrolysis hydrogen transport and storage which could be supplied by future German renewable generation supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals warranting further research and political discussion about this possibility.
Dynamic Simulation of Different Transport Options of Renewable Hydrogen to a Refinery in a Coupled Energy System Approach
Sep 2018
Publication
Three alternative transport options for hydrogen generated from excess renewable power to a refinery of different scales are compared to the reference case by means of hydrogen production cost overall efficiency and CO2 emissions. The hydrogen is transported by a) the natural gas grid and reclaimed by the existing steam reformer b) an own pipeline and c) hydrogen trailers. The analysis is applied to the city of Hamburg Germany for two scenarios of installed renewable energy capacities. The annual course of excess renewable power is modelled in a coupled system approach and the replaceable hydrogen mass flow rate is determined using measurement data from an existing refinery. Dynamic simulations are performed using an open-source Modelica® library. It is found that in all three alternative hydrogen supply chains CO2 emissions can be reduced and costs are increased compared to the reference case. Transporting hydrogen via the natural gas grid is the least efficient but achieves the highest emission reduction and is the most economical alternative for small to medium amounts of hydrogen. Using a hydrogen pipeline is the most efficient option and slightly cheaper for large amounts than employing the natural gas grid. Transporting hydrogen by trailers is not economical for single consumers and realizes the lowest CO2 reductions.
H2FC European Infrastructure; Research Opportunities to Focus on Scientific and Technical Bottlenecks
Sep 2013
Publication
The European Strategy Forum on Research Infrastructures (ESFRI) recognizes in its roadmap for Research Infrastructures that ?in the near future hydrogen as an energy carrier derived from various other fuels and fuel cells as energy transformers are expected to come into a major role for mobility but also for different other mobile and stationary applications? |1|. This modern hydrogen driven society lags far behind the reality. Because of that it is conform to question the current situation concerning the belief that already most is comprehensively investigated and developed concerning hydrogen technology is correct and already done. From that it appears the hydrogen technology is market ready only partial and not prepared in a sufficient way to get finally included and adopted in modern hydrogen driven society and especially the acceptance of the society is a critical. Beside this critical view through society several scientific and technical bottlenecks still discoverable. Nevertheless it is possible to foster furthermore science and development on hydrogen technology. The ?Integrating European Infrastructure? was created to support science and development of hydrogen and fuel cell technologies towards European strategy for sustainable competitive and secure energy also while identifying scientific and technical bottlenecks to support solutions based on. Its acronym is H2FC European Infrastructure and was formed to integrate the European R&D community around rare and/or unique infrastructural elements that will facilitate and significantly enhance the research and development of hydrogen and fuel cell technology.
Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept
Jan 2022
Publication
A fuel cell—gas turbine hybrid propulsion concept is introduced and initially assessed. The concept uses the water mass flow produced by a hydrogen fuel cell in order to improve the efficiency and power output of the gas turbine engine through burner steam injection. Therefore the fuel cell product water is conditioned through a process of condensation pressurization and revaporization. The vaporization uses the waste heat of the gas turbine exhaust. The functional principles of the system concept are introduced and discussed and appropriate methodology for an initial concept evaluation is formulated. Essential technology fields are surveyed in brief. The impact of burner steam injection on gas turbine efficiency and sizing is parametrically modelled. Simplified parametric models of the fuel cell system and key components of the water treatment process are presented. Fuel cell stack efficiency and specific power levels are methodically derived from latest experimental studies at the laboratory scale. The overall concept is assessed for a liquid hydrogen fueled short-/medium range aircraft application. Block fuel savings of up to 7.1% are found for an optimum design case based on solid oxide fuel cell technology. The optimum design features a gas turbine water-to-air ratio of 6.1% in cruise and 62% reduced high-level NOx emissions.
Methane Cracking as a Bridge Technology to the Hydrogen Economy
Nov 2016
Publication
Shifting the fossil fuel dominated energy system to a sustainable hydrogen economy could mitigate climate change through reduction of greenhouse gas emissions. Because it is estimated that fossil fuels will remain a significant part of our energy system until mid-century bridge technologies which use fossil fuels in an environmentally cleaner way offer an opportunity to reduce the warming impact of continued fossil fuel utilization. Methane cracking is a potential bridge technology during the transition to a sustainable hydrogen economy since it produces hydrogen with zero emissions of carbon dioxide. However methane feedstock obtained from natural gas releases fugitive emissions of methane a potent greenhouse gas that may offset methane cracking benefits. In this work a model exploring the impact of methane cracking implementation in a hydrogen economy is presented and the impact on global emissions of carbon dioxide and methane is explored. The results indicate that the hydrogen economy has the potential to reduce global carbon dioxide equivalent emissions between 0 and 27% when methane leakage from natural gas is relatively low methane cracking is employed to produce hydrogen and a hydrogen fuel cell is applied. This wide range is a result of differences between the scenarios and the CH4 leakage rates used in the scenarios. On the other hand when methane leakage from natural gas is relatively high methane steam reforming is employed to produce hydrogen and an internal combustion engine is applied the hydrogen economy leads to a net increase in global carbon dioxide equivalent emissions between 19 and 27%.
Vented Explosion of Hydrogen/Air Mixtures: Influence of Vent Cover and Stratification
Sep 2017
Publication
Explosion venting is a prevention/mitigation solution widely used in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by an accidental explosion. Vented explosions are widely investigated in the literature for various geometries hydrogen/air concentrations ignition positions initial turbulence etc. In real situations the vents are normally covered by a vent panel. In the case of an indoor leakage the hydrogen/air cloud will be stratified rather than homogeneous. Nowadays there is a lack in understanding about the vented explosion of stratified clouds and about the influence of vent cover inertia on the internal overpressure. This paper aims at shedding light on these aspects by means of experimental investigation of vented hydrogen/air deflagration using an experimental facility of 1m3 and via numerical simulations using the computational fluid dynamics (CFD) code FLACS
Safety Concept of a self-sustaining PEM Hydrogen Electrolyzer System
Sep 2013
Publication
Sustainable electricity generation is gaining importance across the globe against the backdrop of ever- diminishing resources and to achieve significant reductions in CO2 emissions. One of the challenges is storing excess energy generated from wind and solar power. Siemens developed an electrolysis system based on proton exchange membrane (PEM) technology enabling large volumes of energy to be stored through the conversion of electrical energy into hydrogen. In developing this new product range Siemens worked intensively on safe operation with a special focus on safety measures (primary secondary and tertiary). Indeed hydrogen is not only a rapidly diffusing gas with a wide range of flammability but frequent lack of information leads to insecurity among the public. Siemens PEM water electrolyzer operates at a working pressure of 50 bar / 5 MPa. The current product generation is being used for demonstration purposes and fits into a 30 ft. / 9.14 m container. Further industrialized product lines up to double-digit medium voltage ranges will be available on the market short- and mid-term. The system is designed to operate self-sustaining. Therefore special features such as back-up and fail-safe mode supported by remote monitoring and access have been implemented. This paper includes Siemens' approach to develop and implement a safety concept for the PEM water electrolyzer leading into the approval and certification by a Notified Body as well as the lessons learnt from test stand and field experience in this new application field
Single-catalyst High-weight% Hydrogen Storage in an N-heterocycle Synthesized from Lignin Hydrogenolysis Products and Ammonia
Oct 2016
Publication
Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein we report that catalytically modified lignin an indigestible abundantly available and hitherto barely used biomass can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.
Ignition of Hydrogen Jet Fires from High Pressure Storage
Sep 2013
Publication
Highly transient jets from hydrogen high pressure tanks were investigated up to 30 MPa. These hydrogen jets might self-initiate when released from small orifices of high pressure storage facilities. The related effects were observed by high speed video technics including time resolved spectroscopy. Ignition flame head jet velocity flame contours pressure wave propagation reacting species and temperatures were evaluated. The evaluation used video cross correlation method BOS brightness subtraction and 1 dimensional image contraction to obtain traces of all movements. On burst of the rupture disc the combustion of the jet starts close to the nozzle on the outer shell of it at the boundary layer to the surrounding air. It propagates with a deceleration approximated by a drag force of constant value which is obtained by analysing the head velocity. The burning at the outer shell develops to an explosion converting a nearly spherical volume at the jet head the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated on an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The results are compared to thermodynamic calculations and radiation measurements. The combustion process is composed of a shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.
Validation of Cryo-Compressed Hydrogen Storage (CCH2) – A Probabilistic Approach
Sep 2011
Publication
Due to its promising potential to overcome the challenge of thermal endurance of liquid hydrogen storage systems cryo-compressed hydrogen storage (CcH2) is regarded as a verypromising physical storage solution in particular for use in larger passenger vehicles with high energy and long range requirements. A probabilistic approach for validation of safe operation of CcH2 storage systems under automotive requirements and experimental results on life-cycle testing is presented. The operational regime of BMW's CcH2 storage covers pressures of up to 35 MPa and temperatures from +65 C down to -240 C applying high loads on composite and metallic materials of the cryogenic pressure vesselcompared to ambient carbon fiber reinforced pressure vessels. Thus the proof of fatigue strength under combined pressure and deep temperature cyclic loads remains a challenging exercise. Furthermore it will be shown that the typical automotive safety and life-cycle requirements can be fulfilled by the CcH2 vehicle storage system and moreover that the CcH2 storage system can even feature safety advantages over a CGH2 storage system mainly due to the advantageous thermodynamic properties of cryogenic hydrogen the lower storage pressure and due to the intrinsic protection against intrusion through the double-shell design.
Simulation of the Efficiency of Hydrogen Recombiners as Safety Devices
Sep 2011
Publication
Passive auto-catalytic recombiners (PARs) are used as safety devices in the containments of nuclear power plants (NPPs) for the removal of hydrogen that may be generated during specific reactor accident scenarios. In the presented study it was investigated whether a PAR designed for hydrogen removal inside a NPP containment would perform principally inside a typical surrounding of hydrogen or fuel cell applications. For this purpose a hydrogen release scenario inside a garage – based on experiments performed by CEA in the GARAGE facility (France) – has been simulated with and without PAR installation. For modelling the operational behaviour of the PAR the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First a helium release scenario was simulated and validated against experimental data. Second helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
Addressing H-Material Interaction in Fast Diffusion Materials—A Feasibility Study on a Complex Phase Steel
Oct 2020
Publication
Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach resulting in consistent low H values below the critical concentration to produce embrittlement. However the dimple size decreased in the presence of H and with increasing charging time the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated proving that the material has no strain rate sensitivity which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here different technological alternatives can be implemented in order to increase the maximum solute concentration.
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Let’s Go Green With Hydrogen! The General Public’s Perspective
Sep 2011
Publication
It is well known in socio-economics that the success of an innovation process depends to a great extent on public acceptance. The German HyTrust project analyzes the current state of public acceptance in hydrogen technology in the mobility sector. This paper focuses on cutting-edge results of interviews focus groups and a representative survey. Based on these results almost 80% of the Germans are in favor of introducing hydrogen vehicles. But from the perspective of the general public it is important that hydrogen is produced in an environmentally friendly way. HyTrust is the socio-scientific research project that accompanies the German Federal Government's National Innovation Programme.
Deflagration-to-detonation Transition of H2-CO-Air Mixtures in a Partially Obstructed Channel
Sep 2019
Publication
In this study an explosion channel is used to investigate flame dynamics in homogeneous hydrogencarbon monoxide-air (H2-CO-air) mixtures. The test rig is a small scale 6 m channel at a rectangular cross section of 300x60 mm. Obstacles of a blockage ratio of BR=60% and a spacing of s=300mm are placed in first part of the channel. A 2.05 m long unobstructed part in the rear of the channel allows for investigation of freely propagating flames and detonations. The fuel composition is varied from 100/0 to 50/50 Vol.-% H2/CO mixtures. The overall fuel content ranges from 15 to 40 Vol.-% in air aiming to obtain fast flames and deflagration-to-detonation transition (DDT). Flame speed and dynamic pressure data are evaluated. Results extend data obtained by [1] and can be used for validation of numerical frameworks. Limits for fast flames and DDT in homogeneous H2-CO-air mixtures at the given geometry are presented.
Evaluation of Optical and Spectroscopic Experiments of Hydrogen Jet Fires
Sep 2009
Publication
This paper reports results of evaluating joint experiments under the work programme of Hysafe occurring at HSL who provided the test facilities and basic measurements to generate jet fires whereas Fraunhofer ICT applied their equipment to visualise the jet fires by fast video techniques IR-cameras and fast scanning spectroscopy in the NIR/IR spectral region. Another paper describes the experimental set up and main findings of flame structures and propagation resolved in time. The spatial distribution of species and temperate as well as their time history and fluctuations give a basis of the evaluation of effects caused by such jet fires. Fraunhofer ICT applied their comprehensive evaluation codes to model the radiation emission from 3-atomic species in the flame especially H2O in the Infrared spectral range. The temperatures of the hydrogen flame were about 2000 K as found by least squares fit of the measured molecular bands by the codes. In comparison with video and thermo camera frames these might enable to estimate on a qualitative level species distribution and air entrainment and temperatures to identify hot and reactive zones. The risk analysis could use this information to estimate heat transfer and the areas of risk to direct inflammation from the jet fires by semi-empirical approaches.
Composite Gas Cylinders Probabilistic Analysis of Minimum Burst and Load Cycle Requirements
Oct 2015
Publication
Gas cylinders made of composite materials receive growing popularity in light-weight applications. Current standards are mostly based on safety determination relying on minimum amounts of endured load cycles and a minimum burst pressure of a small number of specimens. This paper investigates the possibilities of a probabilistic strength assessment for safety improvements as well as cost and weight savings. The probabilistic assessment is based on destructive testing of small sized samples. The influence of sample size on uncertainty of the assessment is analysed. Furthermore methods for the assessment of in-service ageing (degradation) are discussed and displayed in performance charts.
Numerical Study on the Influence of Different Boundary Conditions on the Efficiency of Hydrogen Recombiners Inside a Car Garage
Oct 2015
Publication
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices e.g. in case of active ventilation failure.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Recently computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location hydrogen release scenario and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behaviour for changing boundary conditions and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.
In a first step the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step different hydrogen release modes have been simulated which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore the interaction of active venting and PAR operation has been investigated.
As a result of this parameter study the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.
Venting Deflagrations of Local Hydrogen-air Mixture
Oct 2015
Publication
The paper describes a lumped-parameter model for vented deflagrations of localised and layered fuel air mixtures. Theoretical model background is described to allow insight into the model development with focus on lean mixtures and overpressures significantly below 0.1 MPa for protection of low strength equipment and buildings. Phenomena leading to combustion augmentation was accounted based on conclusions of recent CFD studies. Technique to treat layered mixtures with concentration gradient is demonstrated. The model is validated against 25 vented deflagration experiments with lean non-uniform and layered hydrogen-air mixtures performed in Health and Safety Laboratory (UK) and Karlsruhe Institute of Technology (Germany).
Real-gas Equations-of-State for the GASFLOW CFD Code
Sep 2011
Publication
GASFLOW is a finite-volume computer code that solves the time-dependent two-phase homogeneous equilibrium model compressible Navier–Stokes equations for multiple gas species with turbulence. The fluid-dynamics algorithm is coupled with conjugate heat and mass transfer models to represent walls floors ceilings and other internal structures to describe complex geometries such as those found in nuclear containments and facilities. Recent applications involve simulations of cryogenic hydrogen tanks at elevated pressures. These applications which often have thermodynamic conditions near the critical point require more accurate real-gas Equations-of-State (EoS) and transport properties than the standard ideal gas EoS and classical kinetic-theory transport properties. This paper describes the rigorous implementation of the generalized real-gas EoS into the GASFLOW CFD code as well as the specific implementation of respective real-gas models (Leachman's NIST hydrogen EoS a modified van der Waals EoS and a modified Nobel-Abel EoS); it also includes a logical testing procedure based upon a numerically exact benchmark problem. An example of GASFLOW simulations is presented for an ideal cryo-compressed hydrogen tank of the type utilized in fuel cell vehicles.
Flammability Limits and Laminar Flame Speed of Hydrogen–air Mixtures at Sub-atmospheric Pressures
Sep 2011
Publication
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length overall reaction order and activation energy was done from experimental data on laminar burning velocity.
Modeling of the Flame Acceleration in Flat Layer for Hydrogen-air Mixtures
Sep 2011
Publication
The flame propagation regimes for the stoichiometric hydrogen-air mixtures in an obstructed semiconfined flat layer have been numerically investigated in this paper. Conditions defining fast or sonic propagation regime were established as a function of the main dimensions characterizing the system and the layout of the obstacles. It was found that the major dependencies were the following: the thickness of the layer of H2-air mixture the blockage ratio and the distance between obstacles and the obstacle size. A parametric study was performed to determine the combination of the above variables prone to produce strong combustions. Finally a criterion that separates experiments resulting in slow subsonic from fast sonic propagations regimes was proposed.
Regulations and Research on RC&S for Hydrogen Storage Relevant To Transport and Vehicle Issues with Special Focus on Composite Containments
Sep 2011
Publication
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations codes and standards.<br/>Based on this review origins of different regulations for the storage of hydrogen as dangerous good and as propellant for vehicles will be examined. Both categories started out using steel and sometimes aluminium as cylinder material. With composite materials becoming more common a new problem emerged: vital input for regulations on composite pressure systems was initially derived from decades of experience with steel cylinders. As a result both regulatory fields suffer somewhat from this common basis. Only recent developments regarding requirements for composite cylinders have begun to go more and more separate ways. Thus these differences lead to some shortcomings in regulation with respect to composite storage systems.<br/>In principle in spite of separate development these deficits are in both applications very much the same: there are uncertainties in the prediction of safe service life in retesting procedures of composite cylinders and in their intervals. Hence different aspects of uncertainties and relevant approaches to solutions will be explained.
Ignition and Heat Radiation of Cryogenic Hydrogen Jets
Sep 2011
Publication
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature velocity turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.
Experimental Investigation of Flame and Pressure Dynamics after Spontaneous Ignition in Tube Geometry
Sep 2013
Publication
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe filled with ambient air can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.
No more items...