Germany
Hydrogen from Waste Gasification
Feb 2024
Publication
Hydrogen is a versatile energy vector for a plethora of applications; nevertheless its production from waste/residues is often overlooked. Gasification and subsequent conversion of the raw synthesis gas to hydrogen are an attractive alternative to produce renewable hydrogen. In this paper recent developments in R&D on waste gasification (municipal solid waste tires plastic waste) are summarised and an overview about suitable gasification processes is given. A literature survey indicated that a broad span of hydrogen relates to productivity depending on the feedstock ranging from 15 to 300 g H2/kg of feedstock. Suitable gas treatment (upgrading and separation) is also covered presenting both direct and indirect (chemical looping) concepts. Hydrogen production via gasification offers a high productivity potential. However regulations like frame conditions or subsidies are necessary to bring the technology into the market.
Blue Hydrogen and Industrial Base Products: The Future of Fossil Fuel Exporters in a Net-zero World
May 2022
Publication
Is there a place for today’s fossil fuel exporters in a low-carbon future? This study explores trade channels between energy exporters and importers using a novel electricity-hydrogen-steel energy systems model calibrated to Norway a major natural gas producer and Germany a major energy consumer. Under tight emission constraints Norway can supply Germany with electricity (blue) hydrogen or natural gas with re-import of captured CO2. Alternatively it can use hydrogen to produce steel through direct reduction and supply it to the world market an export route not available to other energy carriers due to high transport costs. Although results show that natural gas imports with CO2 capture in Germany is the least-cost solution avoiding local CO2 handling via imports of blue hydrogen (direct or embodied in steel) involves only moderately higher costs. A robust hydrogen demand would allow Norway to profitably export all its natural gas production as blue hydrogen. However diversification into local steel production as one example of easy-to-export industrial base products offers an effective hedge against the possibility of lower European blue hydrogen demand. Looking beyond Europe the findings of this study are also relevant for the world’s largest energy exporters (e.g. OPEC+) and importers (e.g. developing Asia). Thus it is recommended that large hydrocarbon exporters consider a strategic energy export transition to a diversified mix of blue hydrogen and climate-neutral industrial base products.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
H2-powered Aviation - Design and Economics of Green LH2 Supply for Airports
Aug 2023
Publication
The economic competitiveness of hydrogen-powered aviation highly depends on the supply costs of green liquid hydrogen to enable true-zero CO2 flying. This study uses non-linear energy system optimization to analyze three main liquid hydrogen (LH2) supply pathways for five locations. Final liquid hydrogen costs at the dispenser supply costs could reach 2.04 USD/kgLH2 in a 2050 base case scenario for locations with strong renewable energy source conditions. This could lead to cost-competitive flying with hydrogen. Reflecting techno-economic uncertainties in two additional scenarios the liquid hydrogen cost span at all five airport locations ranges between 1.37–3.48 USD/kgLH2 if hydrogen import options from larger hydrogen markets are also available. Import setups are of special importance for airports with a weaker renewable energy source situation e.g. selected Central European airports. There on-site supply might not only be too expensive but space requirements for renewable energy sources could be too large for feasible implementation in densely populated regions. Furthermore main costs for liquid hydrogen are caused by renewable energy sources electrolysis systems and liquefaction plants. Seven detailed design rules are derived for optimized energy systems for these and the storage components. This and the cost results should help infrastructure planners and general industry and policy players prioritize research and development needs
Socio-environmental and Technical Factors Assessment of Photovoltaic Hydrogen Production in Antofagasta, Chile
Apr 2024
Publication
This study introduces a method for identifying territories ideal for establishing photovoltaic (PV) plants for green hydrogen (GH2 ) production in the Antofagasta region of northern Chile a location celebrated for its outstanding solar energy potential. Assessing the viability of PV plant installation necessitates a balanced consideration of technical aspects and socio-environmental constraints such as the proximity to areas of ecological importance and indigenous communities to identify potential zones for solar and non-conventional renewable energy (NCRE)-based hydrogen production. To tackle this challenge we propose a methodology that utilizes geospatial analysis integrating Geographic Information System (GIS) tools with sensitivity analysis to determine the most suitable sites for PV plant installation in the Antofagasta region. Our geospatial analysis employs the QGIS software to identify these optimal locations while sensitivity analysis uses the Sørensen–Dice coefficient method to assess the similarity among chosen socio-environmental variables. Applying this methodology to the Antofagasta region reveals that a significant area within a 15 km radius of existing road networks and electrical substations is favorable for photovoltaic projects. Our sensitivity analysis further highlights the limiting effects of socio-environmental factors and their interactions. Moreover our research finds that enlarging areas of socio-environmental importance could increase the total hydrogen production by about 10% per commune indicating the impact of these factors on the potential for renewable energy production.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
The Effects of Hydrogen Research and Innovation on International Hydrogen Trade
Feb 2024
Publication
Climate change and the pressure to decarbonize as well as energy security concerns have drawn the attention of policymakers and the industry to hydrogen energy. To advance the hydrogen economy at a global scale research and innovation progress is of significant importance among others. However previous studies have provided only limited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead they postulate rather than empirically support this relationship. Therefore this study analyzes the effects of research and innovation measured by scientific publications patents and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth along with infrastructure support and harmonized standards and regulations.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Thermodynamic Evaluation and Carbon Footprint Analysis of the Application of Hydrogen-Based Energy-Storage Systems in Residential Buildings
Sep 2016
Publication
This study represents a thermodynamic evaluation and carbon footprint analysis of the application of hydrogen based energy storage systems in residential buildings. In the system model buildings are equipped with photovoltaic (PV) modules and a hydrogen storage system to conserve excess PV electricity from times with high solar irradiation to times with low solar irradiation. Short-term storages enable a degree of self-sufficiency of approximately 60% for a single-family house (SFH) [multifamily house (MFH): 38%]. Emissions can be reduced by 40% (SFH) (MFH: 30%) compared to households without PV modules. These results are almost independent of the applied storage technology. For seasonal storage the degree of self-sufficiency ranges between 57 and 83% (SFH). The emission reductions highly depend on the storage technology as emissions caused by manufacturing the storage dominate the emission balance. Compressed gas or liquid organic hydrogen carriers are the best options enabling emission reductions of 40%.
Power Sector Effects of Green Hydrogen Production in Germany
Aug 2023
Publication
The use of green hydrogen can support the decarbonization of sectors which are difficult to electrify such as industry or heavy transport. Yet the wider power sector effects of providing green hydrogen are not well understood so far. We use an open-source electricity sector model to investigate potential power sector interactions of three alternative supply chains for green hydrogen in Germany in the year 2030. We distinguish between model settings in which Germany is modeled as an electric island versus embedded in an interconnected system with its neighboring countries as well as settings with and without technology-specific capacity bounds on wind energy. The findings suggest that large-scale hydrogen storage can provide valuable flexibility to the power system in settings with high renewable energy shares. These benefits are more pronounced in the absence of flexibility from geographical balancing. We further find that the effects of green hydrogen production on the optimal generation portfolio strongly depend on the model assumptions regarding capacity expansion potentials. We also identify a potential distributional effect of green hydrogen production at the expense of other electricity consumers of which policy makers should be aware.
The Role of Hydrogen for the Defossilization of the German Chemical Industry
Apr 2023
Publication
Within the European Green Deal the European industry is summoned to transform towards a green and circular economy to reduce CO2-emissions and reach climate goals. Special focus is on the chemical industry to boost recycling processes for plastics exploit resource efficiency potentials and switch to a completely renewable feedstock (defossilization). Despite common understanding that drastic changes have to take place it is yet unknown how the industrial transformation should be accomplished. This work explains how a cost-optimal defossilization of the chemical industry in the context of national greenhouse gas (GHG) mitigation strategies look like. The central part of this investigation is based on a national energy system model to optimize the future energy system design of Germany as a case study for a highly industrialized country. A replacement of fossil-based feedstocks by renewable feedstocks leads to a significant increase in hydrogen demand by þ40% compared to a reference scenario. The resulting demand of hydrogen-based energy carriers including the demand for renewable raw materials must be produced domestically or imported. This leads to cumulative additional costs of the transformation that are 32% higher than those of a reference scenario without defossilization of the industry. Fischer-Tropsch synthesis and the methanol-to-olefins route can be identified as key technologies for the defossilization of the chemical industry.
Renewable Methanol Synthesis
Oct 2019
Publication
Renewable methanol production is an emerging technology that bridges the gap in the shift from fossil fuel to renewable energy. Two thirds of the global emission of CO2 stems from humanity’s increasing energy need from fossil fuels. Renewable energy mainly from solar and wind energy suffers from supply intermittency which current grid infrastructures cannot accommodate. Excess renewable energy can be harnessed to power the electrolysis of water to produce hydrogen which can be used in the catalytic hydrogenation of waste CO2 to produce renewable methanol. This review considers methanol production in the current context regionally for Europe which is dominated by Germany and globally by China. Appropriate carbon-based feedstock for renewable methanol production is considered as well as state-of-the-art renewable hydrogen production technologies. The economics of renewable methanol production necessitates the consideration of regionally relevant methanol derivatives. The thermodynamics kinetics catalytic reaction mechanism operating conditions and reactor design are reviewed in the context of renewable methanol production to reveal the most up to date understanding.
Performance Assessment of a 25 kW Solid Oxide Cell Module for Hydrogen Production and Power Generation
Jan 2024
Publication
Hydrogen produced via water electrolysis from renewable electricity is considered a key energy carrier to defossilize hard-to-electrify sectors. Solid oxide cells (SOC) based reactors can supply hydrogen not only in electrolysis but also in fuel cell mode when operating with (synthetic) natural gas or biogas at low conversion (polygeneration mode). However the scale-up of SOC reactors to the multi-MW scale is still a research topic. Strategies for transient operation depending on electricity intermittency still need to be developed. In this work a unique testing environment for SOC reactors allows reversible operation demonstrating the successful switching between electrolysis (− 75 kW) and polygeneration (25 kW) modes. Transient and steady state experiments show promising performance with a net hydrogen production of 53 kg day− 1 in SOEL operation with ca. − 75 kW power input. The experimental results validate the scaling approach since the reactor shows homogenous temperature profiles.
Benchmark of J55 and X56 Steels on Cracking and Corrosion Effects Under Hydrogen Salt Cavern Boundary Conditions
Feb 2024
Publication
Salt caverns have great potential to store relevant amounts of hydrogen as part of the energy transition. However the durability and suitability of commonly used steels for piping in hydrogen salt caverns is still under research. In this work aging effects focusing on corrosion and cracking patterns of casing steel API 5CT J55 and “H2ready” pipeline steel API 5L X56 were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy after accelerated stress tests with pressure/temperature cycling under hydrogen salt cavern-like conditions. Compared to dry conditions significant more corrosion by presence of salt ions was detected. However compared to X56 only for J55 an intensification of corrosion and cracking at the surface due to hydrogen atmosphere was revealed. Pronounced surface cracks were observed for J55 over the entire samples. Overall the results strongly suggest that X56 is more resistant than J55 under the conditions of a hydrogen salt cavern.
Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1
Feb 2023
Publication
As part of the United Nations’ (UN) Sustainable Development Goal 7 (SDG7) SDG target 7.1 recognizes universal electrification and the provision of clean cooking fuel as two fundamental challenges for global society. Faltering progress toward SDG target 7.1 calls for innovative technologies to stimulate advancements. Hydrogen has been proposed as a versatile energy carrier to be applied in both pillars of SDG target 7.1: electrification and clean cooking. This paper conducts a semi-systematic literature review to provide the status quo of research on the application of hydrogen in the rationale of SDG 7.1 covering the technical integration pathways as well as the key economic environmental and social aspects of its use. We identify decisive factors for the future development of hydrogen use in the rationale of SDG target 7.1 and by complementing our analysis with insights from the related literature propose future avenues of research. The literature on electrification proposes that hydrogen can serve as a backup power supply in rural off-grid communities. While common electrification efforts aim to supply appliances that use lower amounts of electricity a hydrogen-based power supply can satisfy appliances with higher power demands including electric cook stoves while simultaneously supporting clean cooking efforts. Alternatively with the exclusive aim of stimulating clean cooking hydrogen is proposed to be used as a clean cooking fuel via direct combustion in distribution and utilization infrastructures analogous to Liquid Petroleum Gas (LPG). While expected economic and technical developments are seen as likely to render hydrogen technologies economically competitive with conventional fossil fuels in the future the potential of renewably produced hydrogen usage to reduce climate-change impacts and point-of-use emissions is already evident today. Social benefits are likely when meeting essential safety standards as a hydrogen-based power supply offers service on a high tier that might overachieve SDG 7.1 ambitions while hydrogen cooking via combustion fits into the existing social habits of LPG users. However the literature lacks clear evidence on the social impact of hydrogen usage. Impact assessments of demonstration projects are required to fill this research gap.
Subsurface Renewable Energy Storage Capcity for Hydrogen, Methane and Compress Air - A Performance Assessment Study from the North German Basin
Jul 2021
Publication
The transition to renewable energy sources to mitigate climate change will require large-scale energy storage to dampen the fluctuating availability of renewable sources and to ensure a stable energy supply. Energy storage in the geological subsurface can provide capacity and support the cycle times required. This study investigates hydrogen storage methane storage and compressed air energy storage in subsurface porous formations and quantifies potential storage capacities as well as storage rates on a site-specific basis. For part of the North German Basin used as the study area potential storage sites are identified employing a newly developed structural geological model. Energy storage capacities estimated from a volume-based approach are 6510 TWh and 24544 TWh for hydrogen and methane respectively. For a consistent comparison of storage capacities including compressed air energy storage the stored exergy is calculated as 6735 TWh 25795 TWh and 358 TWh for hydrogen methane and compressed air energy storage respectively. Evaluation of storage deliverability indicates that high deliverability rates are found mainly in two of the three storage formations considered. Even accounting for the uncertainty in geological parameters the storage potential for the three considered storage technologies is significantly larger than the predicted demand and suitable storage rates are achievable in all storage formations.
Towards Climate-neutral Aviation: Assessment of Maintenance Requirements for Airborne Hydrogen Storage and Distribution Systems
Apr 2023
Publication
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular we develop a detailed system design for a hydrogen-powered fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore since the presented methodology is transferable to different design solutions it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
No more items...