Germany
Optimal Supply Chains and Power Sector Benefits of Green Hydrogen
Jul 2021
Publication
Green hydrogen can help to decarbonize parts of the transportation sector but its power sector interactions are not well understood so far. It may contribute to integrating variable renewable energy sources if production is sufficiently flexible in time. Using an open-source co-optimization model of the power sector and four options for supplying hydrogen at German filling stations we find a trade-of between energy efficiency and temporal flexibility. For lower shares of renewables and hydrogen more energy-efficient and less flexible small-scale on-site electrolysis is optimal. For higher shares of renewables and/or hydrogen more flexible but less energy-efficient large-scale hydrogen supply chains gain importance as they allow to temporally disentangle hydrogen production from demand via storage. Liquid hydrogen emerges as particularly beneficial followed by liquid organic hydrogen carriers and gaseous hydrogen. Large-scale hydrogen supply chains can deliver substantial power sector benefits mainly through reduced renewable curtailment. Energy modelers and system planners should consider the distinct flexibility characteristics of hydrogen supply chains in more detail when assessing the role of green hydrogen in future energy transition scenarios. We also propose two alternative cost and emission metrics which could be useful in future analyses.
Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs
Oct 2020
Publication
Human health is a key pillar of modern conceptions of sustainability. Humanity pays a considerable price for its dependence on fossil-fueled energy systems which must be addressed for sustainable urban development. Public hospitals are focal points for communities and have an opportunity to lead the transition to renewable energy. We have reimagined the healthcare energy ecosystem with sustainable technologies to transform hospitals into networked clean energy hubs. In this concept design hydrogen is used to couple energy with other on-site medical resource demands and vanadium flow battery technology is used to engage the public with energy systems. This multi-generation system would reduce harmful emissions while providing reliable services tackling the linked issues of human and environmental health.
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
Nov 2021
Publication
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases while high performance ion chromatography (HPIC) isotopic labeling and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photoKolbe reaction mechanism a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2 HD and/or D2 matched those of the solvent; however using D2O decreased the reaction rate. Interestingly the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism and thus the hydrogen yield as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism by which KI boosts the photocatalytic performance is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming.
A Policy Review of Green Hydrogen Economy in Southern Africa
Nov 2021
Publication
Renewable energy and clean energy have been on the global agenda for energy transition for quite a long time but recently gained strong momentum especially with the anticipated depletion of fossil fuels alongside increasing environmental degradation from their exploitation and the changing climate caused by their excessive carbon emissions. Despite this Africa’s pursuit to transition to a green economy using renewable energy resources still faces constraints that hamper further development and commercialization. These may include socio-economic technical political financial and institutional policy framework barriers. Although hydrogen demand is still low in Southern Africa the region can meet the global demands for green hydrogen as a major supplier because of its enormous renewable energy resource-base. This article reviews existing renewable energy resources and hydrogen energy policies in the Southern African Development Community (SADC). The significance of this review is that it explores how clean energy technologies that utilize renewable energy resources address the United Nations sustainable development goals (UN SDGs) and identifies the hydrogen energy policy gaps. This review further presents policy options and recommends approaches to enhance hydrogen energy production and ramp the energy transition from a fossil fuel-based economy to a hydrogen energy-based economy in Southern Africa. Concisely the transition can be achieved if the existing hydrogen energy policy framework gap is narrowed by formulating policies that are specific to hydrogen development in each country with the associated economic benefits of hydrogen energy clearly outlined.
Underground Storage of Green Hydrogen—Boundary Conditions for Compressor Systems
Aug 2022
Publication
The large-scale storage of hydrogen in salt caverns modelled on today’s natural gas storage is a promising approach to storing renewable energy over a large power range and for the required time period. An essential subsystem of the overall gas storage is the surface facility and in particular the compressor system. The future design of compressor systems for hydrogen storage strongly depends on the respective boundary conditions. Therefore this work analyses the requirements of compressor systems for cavern storage facilities for the storage of green hydrogen i.e. hydrogen produced from renewable energy sources using the example of Lower Saxony in Germany. In this course a hydrogen storage demand profile of one year is developed in hourly resolution from feed-in time series of renewable energy sources. The injection profile relevant for compressor operation is compared with current natural gas injection operation modes
Underground Bio-methanation: Concept and Potential
Feb 2020
Publication
As a major part of the energy turn around the European Union and other countries are supporting the development of renewable energy technologies to decrease nuclear and fossil energy production. Therefore efficient use of renewable energy resources is one challenge as they are influenced by environmental conditions and hence the intensity of resources such as wind or solar power fluctuates. To secure constant energy supply suitable energy storage and conversion techniques are required. An upcoming solution is the utilization and storage of hydrogen or hydrogen-rich natural gas in porous formations in the underground. In the past microbial methanation was observed as a side effect during these gas storage operations. The concept of underground bio-methanation arised which uses the microbial metabolism to convert hydrogen and carbon dioxide into methane. The concept consists of injecting gaseous hydrogen and carbon dioxide into an underground structure during energy production peaks which are subsequently partly converted into methane. The resulting methane-rich gas mixture is withdrawn during high energy demand. The concept is comparable to engineered bio-reactors which are already locally integrated into the gas infrastructure. In both technologies the conversion process of hydrogen into methane is driven by hydrogenotrophic methanogenic archaea present in the aqueous phase of the natural underground or above-ground engineered reactor. Nevertheless the porous medium in the underground provides compared to the engineered bio-reactors a larger interface between the gas and aqueous phase caused by the enormous volume in the underground porous media. The following article summarizes the potential and concept of underground methanation and the current state of the art in terms of laboratory investigations and pilot tests. A short system potential analysis shows that an underground bio-reactor with a storage capacity of 850 Mio. Sm3 could deliver methane to more than 600000 households based on a hydrogen production from renewable energies.
Potential of Power-to-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization
Oct 2018
Publication
Power-to-Methane (PtM) can provide flexibility to the electricity grid while aiding decarbonization of other sectors. This study focuses specifically on the methanation component of PtM in 2050. Scenarios with 80–95% CO2 reduction by 2050 (vs. 1990) are analyzed and barriers and drivers for methanation are identified. PtM arises for scenarios with 95% CO2 reduction no CO2 underground storage and low CAPEX (75 €/kW only for methanation). Capacity deployed across EU is 40 GW (8% of gas demand) for these conditions which increases to 122 GW when liquefied methane gas (LMG) is used for marine transport. The simultaneous occurrence of all positive drivers for PtM which include limited biomass potential low Power-to-Liquid performance use of PtM waste heat among others can increase this capacity to 546 GW (75% of gas demand). Gas demand is reduced to between 3.8 and 14 EJ (compared to ∼20 EJ for 2015) with lower values corresponding to scenarios that are more restricted. Annual costs for PtM are between 2.5 and 10 bln€/year with EU28’s GDP being 15.3 trillion €/year (2017). Results indicate that direct subsidy of the technology is more effective and specific than taxing the fossil alternative (natural gas) if the objective is to promote the technology. Studies with higher spatial resolution should be done to identify specific local conditions that could make PtM more attractive compared to an EU scale.
Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Oct 2022
Publication
The steel industry is focused on reducing its environmental impact. Using the life cycle assessment (LCA) methodology the impacts of the primary steel production via the blast furnace route and the scrap-based secondary steel production via the EAF route are assessed. In order to achieve environmentally friendly steel production breakthrough technologies have to be implemented. With a shift from primary to secondary steel production the increasing steel demand is not met due to insufficient scrap availability. In this paper special focus is given on recycling methodologies for metals and steel. The decarbonization of the steel industry requires a shift from a coal-based metallurgy towards a hydrogen and electricity-based metallurgy. Interim scenarios like the injection of hydrogen and the use of pre-reduced iron ores in a blast furnace can already reduce the greenhouse gas (GHG) emissions up to 200 kg CO2/t hot metal. Direct reduction plants combined with electrical melting units/furnaces offer the opportunity to minimize GHG emissions. The results presented give guidance to the steel industry and policy makers on how much renewable electric energy is required for the decarbonization of the steel industry
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Cryogenic and Ambient Gaseous Hydrogen Blowdown with Discharge Line Effects
Sep 2021
Publication
The present work performed within the PRESLHY EC-project presents a simplified 1-d transient modelling methodology to account for discharge line effects during blowdown. The current formulation includes friction extra resistance area change and heat transfer through the discharge line walls and is able to calculate the mass flow rate and distribution of all physical variables along the discharge line. Choked flow at any time during the transient is calculated using the Possible Impossible Flow (PIF) algorithm. Hydrogen single phase physical properties and vapour-liquid equilibrium are calculated using the Helmholtz Free Energy (HFE) formulation. Homogeneous Equilibrium Mixture (HEM) model is used for two-phase physical properties. Validation is performed against the new experiments with compressed gaseous hydrogen performed at the DISCHA facility in the framework of PRESLHY (200 bar ambient and cryogenic initial tank temperature 77 K and 4 nozzle diameters 0.5 1 2 and 4 mm) and an older experiment at 900 bar ambient temperature and 2 mm nozzle. Predictions are compared against measured data from the experiments and the relative importance of line heat transfer compared to flow resistance is analysed.
Industrial Decarbonization Pathways: The Example of the German Glass Industry
Nov 2022
Publication
Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately +200%. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching the complete phase-out from natural gas to renewable energy carriers. Furthermore the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
Towards Green Hydrogen? - A Comparison of German and African Visions and Expectations in the Context of the H2Atlas-Africa Project
Sep 2023
Publication
Green hydrogen promises to be critical in achieving a sustainable and renewable energy transition. As green hydrogen is produced with renewables green hydrogen could become an energy storage medium of the future and even substitute the current unsustainable grey or blue hydrogen used in the industry. Bringing this transition into reality for instance in Germany there are visions to rapidly build hydrogen facilities in Africa and export the produced green hydrogen to Europe. One problem however is that these visions presumably conflict with the visions of actors within Africa. Therefore this study aims to provide an initial assessment of African stakeholders’ visions for future energy exports and renewable energy expectations. By comparing visions from Germany and Africa this assessment was conducted to identify differences in green energy and hydrogen visions that could lead to conflict and similarities that could be the basis for cooperation. The National Hydrogen Strategy outlines the German visions which clarifies that Germany will have to import green hydrogen to meet its green transition target. In this context of future energy export demand a partnership between German and African researchers on assessing green hydrogen potentials in Africa started. The African visions were explored by surveying the partners from different African countries working on the project. The results revealed that while both sides see the need for an immediate transition to renewable energy the African side is not envisioning the immediate export of green hydrogen. Based on the responses the partners are primarily concerned with improving the continent’s still deficient energy access for both the population and industry. Nevertheless this African perspective greatly emphasises cross-border cooperation where both sides can realise their visions. In the case of Germany that German investment could build infrastructure which would benefit the receiving African country or countries and open up the possibility for the envisioned green hydrogen export to Europe.
Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers Versus Demand for Hydrogen Storage: A Case Study of Poland
Nov 2023
Publication
Geological structures in deep aquifers and salt caverns can play an important role in large-scale hydrogen storage. However more work needs to be done to address the hydrogen storage demand for zero-emission energy systems. Thus the aim of the article is to present the demand for hydrogen storage expressed in the number of salt caverns in bedded rock salt deposits and salt domes or the number of structures in deep aquifers. The analysis considers minimum and maximum hydrogen demand cases depending on future energy system configurations in 2050. The method used included the estimation of the storage capacity of salt caverns in bedded rock salt deposits and salt domes and selected structures in deep aquifers. An estimation showed a large hydrogen storage potential of geological structures. In the case of analyzed bedded rock salt deposits and salt domes the average storage capacity per cavern is 0.05–0.09 TWhH2 and 0.06–0.20 TWhH2 respectively. Hydrogen storage capacity in analyzed deep aquifers ranges from 0.016 to 4.46 TWhH2. These values indicate that in the case of the upper bound for storage demand there is a need for the 62 to 514 caverns depending on considered bedded rock salt deposits and salt domes or the 9 largest analyzed structures in deep aquifers. The results obtained are relevant to the discussion on the global hydrogen economy and the methodology can be used for similar considerations in other countries.
No more items...