Germany
Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis
Aug 2016
Publication
Water electrolysis is a promising technology for enabling the storage of surplus electricity produced by intermittent renewable power sources in the form of hydrogen. At the core of this technology is the electrolyte and whether this is acidic or alkaline affects the reaction mechanisms gas purities and is of significant importance for the stability and activity of the electrocatalysts. This article presents a simple but precise physical model to describe the voltage-current characteristic heat balance gas crossover and cell efficiency of water electrolyzers. State-of-the-art water electrolysis cells with acidic and alkaline electrolyte are experimentally characterized in order to parameterize the model. A rigorous comparison shows that alkaline water electrolyzers with Ni-based catalysts but thinner separators than those typically used is expected be more efficient than acidic water electrolysis with Ir and Pt based catalysts. This performance difference was attributed mainly to a similar conductivity but approximately 38-fold higher diffusivities of hydrogen and oxygen in the acidic polymer electrolyte membrane (Nafion) than those in the alkaline separator (Zirfon filled with a 30 wt% KOH solution). With reference to the detailed analysis of the cell characteristics perspectives for the improvement of the efficiency of water electrolyzers are discussed.
Life Cycle Assessment of Improved High Pressure Alkaline Electrolysis
Aug 2015
Publication
This paper investigates environmental impacts of high pressure alkaline water electrolysis systems. An advanced system with membranes on polymer basis is compared to a state-of-the-art system with asbestos membranes using a Life Cycle Assessment (LCA) approach. For the advanced system a new improved membrane technology has been investigated within the EU research project “ELYGRID”. Results indicate that most environmental impacts are caused by the electricity supply necessary for operation. During the construction phase cell stacks are the main contributor to environmental impacts. New improved membranes have relatively small contributions to impacts caused by cell construction within the advanced systems. As main outcome the systems comparison illustrates a better ecological performance of the new developed system
Hydrogen Technology Towards the Solution of Environment-Friendly New Energy Vehicles
Aug 2021
Publication
The popularity of climate neutral new energy vehicles for reduced emissions and improved air quality has been raising great attention for many years. World-wide a strong commitment continues to drive the demand for zero-emission through alternative energy sources and propulsion systems. Despite the fact that 71.27% of hydrogen is produced from natural gas green hydrogen is a promising clean way to contribute to and maintain a climate neutral ecosystem. Thereby reaching CO2 targets for 2030 and beyond requires cross-sectoral changes. However the strong motivation of governments for climate neutrality is challenging many sectors. One of them is the transport sector as it is challenged to find viable all-in solutions that satisfy social economic and sustainable requirements. Currently the use of new energy vehicles operating on green sustainable hydrogen technologies such as batteries or fuel cells has been the focus for reducing the mobility induced emissions. In Europe 50% of the total emissions result from mobility. The following article reviews the background ongoing challenges and potentials of new energy vehicles towards the development of an environmentally friendly hydrogen economy. A change management process mindset has been adapted to discuss the key scientific and commercial challenges for a successful transition.
Iron as Recyclable Energy Carrier: Feasibility Study and Kinetic Analysis of Iron Oxide Reduction
Oct 2022
Publication
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution especially for stationary applications could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. Based on equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Based on thermogravimetric experiments using Fe2O3 Fe3O4 and FeO it could be shown that the reduction is a three-step process. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
Mineral Reactions in the Geological Underground Induced by H2 and CO2 Injections
Dec 2014
Publication
The R&D project H2STORE is part of the German program to reduce environmental pollution by energy production and in saving fossil natural resources. Thereby physico-chemical processes in the CO2-H2 system by organic and inorganic reactions receive increasing attention. In H2STORE siliciclastic reservoirs and their caprocks from 25 well sites in Germany and Austria are investigated by different analytical methods before and after H2/CO2 batch experiments under sample specific reservoir conditions (p T XFluid). Mineral dissolution precipitation and their impact on reservoir quality (poro-perm fluid pathways) and on the generation of methane by microbial metabolism triggered by CO2/H2 exposure are studied.
Towards a Low-Carbon Society via Hydrogen and Carbon Capture and Storage: Social Acceptance from a Stakeholder Perspective
Apr 2020
Publication
Transformation concepts towards a low-carbon society often require new technology and infrastructure that evoke protests in the population. Therefore it is crucial to understand positions and conflicts in society to achieve social acceptance. This paper analyses these positions using the example of implementing hydrogen and carbon capture and storage infrastructure to decarbonise the German energy system. The empirical basis of the study are explorative stakeholder interviews which were conducted with experts from politics economics civil society and science and analysed within a discursive and attitudinal framework using qualitative content analysis. These stakeholder positions are assumed to represent dominant social perceptions and reflect chances and risks for acceptance. The results indicate different positions while pursuing the common goal of addressing climate change. The general conflict concerns strategies towards a low-carbon society especially the speed of phasing-out fossil energies. Regarding the combination of hydrogen and carbon capture and storage as instrument in the context of the energy transition the stakeholder interviews indicate controversial as well as consensual perceptions. The assessments range from rejection to deeming it absolutely necessary. Controversial argumentations refer to security of supply competitiveness and environmental protection. In contrast consensus can be reached by balancing ecological and economic arguments e.g. by linking hydrogen technologies with renewable and fossil energy sources or by limiting the use of carbon capture and storage only to certain applications (industry bioenergy). In further decisions this balancing of arguments combined with openness of technology transparency of information and citizen participation need to be considered to achieve broad acceptance.
On the Road to Sustainable Transport: Acceptance and Preferences for Renewable Fuel Production Infrastructure
Sep 2022
Publication
To abate climate change and ameliorate the air quality in urban areas innovative solutions are required to reduce CO2 and pollutant emissions from traffic. Alternative fuels made from biomass or CO2 and hydrogen can contribute to these goals by substituting fossil gasoline or diesel in combustion engines. Using a conjoint analysis approach the current study investigates preferences of laypeople (n = 303) for fuel production facilities in terms of siting location plant size raw material used in the production and raw material transport. The location was most decision-relevant followed by raw material transport whereas plant size and type of raw material played a less prominent role for the preference choice. The best-case scenario from the point of view of acceptance would be the installation of a rather small bio-hybrid fuel production plant in an industrial area (instead of an agricultural or pristine environment). No transport or transport via underground pipeline were preferred over truck/tank car or overground pipeline. The findings can be used as a basis for planning and decision-making for designing production networks for new fuel types.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
Analysis and Design of Fuel Cell Systems for Aviation
Feb 2018
Publication
In this paper the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell general design considerations are derived. Considering different possible design objectives the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor wP is introduced which allows incorporating technical (e.g. system mass and efficiency) as well as non-technical design objectives (e.g. operating cost emission goals social acceptance or technology affinity political factors). The optimal fuel cell design is not determined by the characteristics of the fuel cell alone but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.
Conceptual Study and Development of an Autonomously Operating, Sailing Renewable Energy Conversion System
Jun 2022
Publication
With little time left for humanity to reduce climate change to a tolerable level a highly scalable and rapidly deployable solution is needed that can be implemented by any country. Offshore wind energy in international waters is an underused resource and could even be harnessed by landlocked countries. In this paper the use of sailing wind turbines operating autonomously in high seas to harvest energy is proposed. The electrical energy that is generated by the wind turbine is converted to a renewable fuel and stored onboard. Later the fuel will be transferred to shore or to other destinations of use. The presented idea is explored at the system level where the basic subsystems necessary are identified and defined such as energy conversion and storage as well as propulsion subsystems. Moreover various operating possibilities are investigated including a comparison of different sailing strategies and fuels for storage. Existing ideas are also briefly addressed and an example concept is suggested as well. In this paper the proposed sailing renewable energy conversion system is explored at a higher level of abstraction. Following up on this conceptual study more detailed investigations are necessary to determine whether the development of such a sailing renewable energy conversion system is viable from an engineering economic and environmental point of view.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Cost-effective Technology Choice in a Decarbonized and Diversified Long-haul Truck Transportation Sector: A U.S. Case Study
Dec 2021
Publication
Achieving net-zero emissions by 2050 will require accelerated efforts that include decarbonizing long-haul truck transportation. In this difficult-to-decarbonize low-margin industry economic transparency on technology options is vital for decision makers seeking to eliminate emissions. Battery electric (BET) and hydrogen fuel cell electric trucks (FCET) can represent emission-free alternatives to diesel-powered trucks (DT). Previous studies focus on cost competitiveness in weight-constrained transportation even though logistics research shows that significant shares of transportation are constrained by volume and analyze cost only for selected technologies hence impeding a differentiated market segmentation of future emission-free trucks. In this study the perspective of a rational investor is taken and it is shown that under current conditions in the U.S. BETs outperform FCETs in various long-haul use cases despite charging times and cargo deficits and will further increase their technological competitiveness to DTs. While future energy and fueling prices are decisive for BET competitiveness the analysis reveals that autonomous driving may change the picture in favor of FCETs.
Is Blue Hydrogen a Bridging Technology? - The Limits of a CO2 Price and the Role of State-induced Price Components for Green Hydrogen Production in Germany
Jun 2022
Publication
The European Commission aims to establish green hydrogen produced through electrolysis using renewable electricity and in a transition phase hydrogen produced in a low-carbon process or blue hydrogen. In an extensive cost analysis for Germany up to 2050 based on scenario data and a component-based learning rate approach we find that blue hydrogen is likely to establish itself as the most cost-effective option and not only as a medium-term low-carbon alternative. We find that expected CO2 prices below €480/tCO2 have a limited impact on the economic feasibility of electrolysis and show that substantial increases in excise tax on natural gas could lead blue hydrogen to reach a sufficient cost level for electrolysed hydrogen. Unless alternatives for green hydrogen supply through infrastructure and imports become available at lower cost electrolysed hydrogen may require long-term subsidies. As blue hydrogen comprises fugitive methane emissions and financing needs for green hydrogen support have implications for society and competition in the internal market we suggest that policymakers rely on hydrogen for decarbonising only essential energy applications. We recommend further investigations into the cost of hydrogen infrastructure and import options as well as efficient subsidy frameworks.
Artificial Intelligence-Based Machine Learning toward the Solution of Climate-Friendly Hydrogen Fuel Cell Electric Vehicles
Jul 2022
Publication
The rapid conversion of conventional powertrain technologies to climate-neutral new energy vehicles requires the ramping of electrification. The popularity of fuel cell electric vehicles with improved fuel economy has raised great attention for many years. Their use of green hydrogen is proposed to be a promising clean way to fill the energy gap and maintain a zero-emission ecosystem. Their complex architecture is influenced by complex multiphysics interactions driving patterns and environmental conditions that put a multitude of power requirements and boundary conditions around the vehicle subsystems including the fuel cell system the electric motor battery and the vehicle itself. Understanding its optimal fuel economy requires a systematic assessment of these interactions. Artificial intelligence-based machine learning methods have been emerging technologies showing great potential for accelerated data analysis and aid in a thorough understanding of complex systems. The present study investigates the fuel economy peaks during an NEDC in fuel cell electric vehicles. An innovative approach combining traditional multiphysics analyses design of experiments and machine learning is an effective blend for accelerated data supply and analysis that accurately predicts the fuel consumption peaks in fuel cell electric vehicles. The trained and validated models show very accurate results with less than 1% error.
AI Agents Envisioning the Future: Forecast-based Operation of Renewable Energy Storage Systems Using Hydrogen with Deep Reinforcement Learning
Feb 2022
Publication
Hydrogen-based energy storage has the potential to compensate for the volatility of renewable power generation in energy systems with a high renewable penetration. The operation of these storage facilities can be optimized using automated energy management systems. This work presents a Reinforcement Learning-based energy management approach in the context of CO2-neutral hydrogen production and storage for an industrial combined heat and power application. The economic performance of the presented approach is compared to a rule-based energy management strategy as a lower benchmark and a Dynamic Programming-based unit commitment as an upper benchmark. The comparative analysis highlights both the potential benefits and drawbacks of the implemented Reinforcement Learning approach. The simulation results indicate a promising potential of Reinforcement Learning-based algorithms for hydrogen production planning outperforming the lower benchmark. Furthermore a novel approach in the scientific literature demonstrates that including energy and price forecasts in the Reinforcement Learning observation space significantly improves optimization results and allows the algorithm to take variable prices into account. An unresolved challenge however is balancing multiple conflicting objectives in a setting with few degrees of freedom. As a result no parameterization of the reward function could be found that fully satisfied all predefined targets highlighting one of the major challenges for Reinforcement Learning -based energy management algorithms to overcome.
Are Sustainable Aviation Fuels a Viable Option for Decarbonizing Air Transport in Europe? An Environmental and Economic Sustainability Assessment
Jan 2022
Publication
The use of drop-in capable alternative fuels in aircraft can support the European aviation sector to achieve its goals for sustainable development. They can be a transitional solution in the short and medium term as their use does not require any structural changes to the aircraft powertrain. However the production of alternative fuels is often energy-intensive and some feedstocks are associated with harmful effects on the environment. In addition alternative fuels are often more expensive to produce than fossil kerosene which can make their use unattractive. Therefore this paper analyzes the environmental and economic impacts of four types of alternative fuels compared to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle costing are used as environmental and economic assessment methods. The results of this well-towake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts of aircraft operations. However an electricity mix based on renewable energies is needed to achieve significant reductions. In addition from an economic perspective the use of fossil kerosene ranks best among the alternatives. A scenario analysis confirms this result and shows that the production of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to significant reductions in environmental impact but economic competitiveness remains problematic.
Decarbonizing the German Industrial Thermal Energy Use with Solar, Hydrogen, and Other Options - Recommendations for the World
Nov 2022
Publication
This paper is based on a position paper of the German Industry Association Concentrated Solar Power e.V. to the German government and discusses options on how to decarbonize the heat demand of the domestic industry. Among other option concentration solar collectors are a suitable option in Germany which has not been expected by many experts. The paper derives requirements that are needed to ensure a quick and sustainable way to decarbonize industrial heat demand. They are considered to also be relevant for many other countries that follow the same ambition to become climate neutral in the next decades. They major statements are: A mix of different renewable energy technologies in conjunction with efficiency measures is needed to ensure a secure climate-friendly and cost-efficient heat supply for the industry; The different technology options for the provision of heat from renewable sources through electrification and through hydrogen can and must be combined and integrated with each other. In this context concentrating solar thermal represents an important part of the hybrid supply portfolio of a decarbonized industry This requires: The definition of an expansion target for process heat and the flanking measures; Ensuring the equivalence of renewable heat renewable electricity and green hydrogen - also as hybrid solutions; The promotion of concentrating solar thermal reference projects as an impetus for market ramp-up in Germany; The launch of an information campaign for heat consumers and the establishment of a pool of consultants.
Hydrogen Blowdown Release Experiments at Different Temperatures in the Discha-facility
Sep 2021
Publication
In this work experiments on horizontal hydrogen jet releases from a 2.815 dm³ volume tank to the ambience are described. For the main experimental series tank valve and release line were cooled down to a temperature of approx. 80 K in a bath of liquid nitrogen. As a reference similar experiments were also performed with the uncooled tank at ambient temperature. The releases were carried out through four nozzles with different circular orifice diameters from 0.5 to 4 mm and started from initial tank pressures from 0.5 to 20 MPa (rel.). During the releases pressures and temperatures inside the vessel as well as inside the release line were measured. Outside the nozzle further temperature and hydrogen concentration measurements were performed along and besides the jet axis. The electrostatic field builtup in the jet was monitored using two field meters in different distances from the release nozzle and optical observation via photo and video-cameras was performed for the visualization of the H2-jet via the BOS-method. The experiments were performed in the frame of the EU-funded project PRESHLY in which several tests of this program were selected for a comparative computational study the results of which will also be presented at this conference. So on the one hand the paper gives a comprehensive description of the facility on the other hands it also describes the experimental procedure and the main findings.
Strategic Policy Targets and the Contribution of Hydrogen in a 100% Renewable European Power System
Jul 2021
Publication
The goal of the European energy policy is to achieve climate neutrality. The long-term energy strategies of various European countries include additional targets such as the diversification of energy sources maintenance of security of supply and reduction of import dependency. When optimizing energy systems these strategic policy targets are often only considered in a rudimentary manner and thus the understanding of the corresponding interdependencies is lacking. Moreover hydrogen is considered as a key component of a fully decarbonized energy system but its role in the power sector remains unclear due to the low round-trip efficiencies. This study reveals how fully decarbonized European power systems can benefit from hydrogen in terms of overall system costs and the achievement of strategic policy targets. We analyzed a broad spectrum of scenarios using an energy system optimization model and varied model constraints that reflect strategic policy targets. Our results are threefold. First compared to power systems without hydrogen systems using hydrogen realize savings of 14–16% in terms of the total system costs. Second the implementation of a hydrogen infrastructure reduces the number of infeasible scenarios when structural policy targets are considered within the power system. Third the role of hydrogen is highly diverse at a national level. Particularly in countries with low renewable energy potential hydrogen plays a crucial role. Here high levels of self-sufficiency and security of supply are achieved by deploying hydrogen-based power generation of up to 46% of their annual electricity demand realized via imports of green hydrogen.
Green Hydrogen Production Potential in West Africa – Case of Niger
Jul 2022
Publication
Niger offers the possibility of producing green hydrogen due to its high solar energy potential. Due to the still growing domestic oil and coal industry the use of green hydrogen in the country currently seems unlikely at the higher costs of hydrogen as an energy vector. However the export of green hydrogen to industrialized countries could be an option. In 2020 a hydrogen partnership has been established between Germany and Niger. The potential import of green hydrogen represents an option for Germany and other European countries to decarbonize domestic energy supply. Currently there are no known projects for the electrolytic production of hydrogen in Niger. In this work potential hydrogen demand across electricity and transport sectors is forecasted until 2040. The electricity demand in 2040 is expected at 2934 GWh and the gasoline and diesel demand at 964 m3 and 2181 m3 respectively. Accordingly the total hydrogen needed to supply electricity and the transport sector (e.g. to replace 1% gasoline and diesel demand in 2040) is calculated at 0.0117 Mt. Only a small fraction of 5% of the land area in Niger would be sufficient to generate the required electricity from solar PV to produce hydrogen.
No more items...