Germany
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production
Jun 2021
Publication
The Life Cycle Sustainability Assessment (LCSA) is a proven method for sustainability assessment. However the interpretation phase of an LCSA is challenging because many different single results are obtained. Additionally performing a Multi-Criteria Decision Analysis (MCDA) is one way—not only for LCSA—to gain clarity about how to interpret the results. One common form of MCDAs are outranking methods. For these type of methods it becomes of utmost importance to clarify when results become preferable. Thus thresholds are commonly used to prevent decisions based on results that are actually indifferent between the analyzed options. In this paper a new approach is presented to identify and quantify such thresholds for Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) based on uncertainty of Life Cycle Impact Assessment (LCIA) methods. Common thresholds and this new approach are discussed using a case study on finding a preferred location for sustainable industrial hydrogen production comparing three locations in European countries. The single LCSA results indicated different preferences for the environmental economic and social assessment. The application of PROMETHEE helped to find a clear solution. The comparison of the newly-specified thresholds based on LCIA uncertainty with default thresholds provided important insights of how to interpret the LCSA results regarding industrial hydrogen production.
Impact of Hydrogen Admixture on Combustion Processes – Part II: Practice
Dec 2020
Publication
The Fuel Cells & Hydrogen Joint Undertaking (FCH JU) project ""Testing Hydrogen admixture for Gas Appliances"" aka THyGA is proud to release the second deliverable about the impact of hydrogen admixture on combustion processes. This time the report explores the expected impact of H2NG on a range of appliance designs installed in the EU.
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling
May 2022
Publication
In the future hydrogen (H2) will play a significant role in the sustainable supply of energy and raw materials to various sectors. Therefore the electrolysis of water required for industrial‐ scale H2 production represents a key component in the generation of renewable electricity. Within the scope of fundamental research work on cell components for polymer electrolyte membrane (PEM) electrolyzers and application‐oriented living labs an MW electrolysis system was used to further improve industrial‐scale electrolysis technology in terms of its basic structure and systems‐ related integration. The planning of this work as well as the analytical and technical approaches taken along with the essential results of research and development are presented herein. The focus of this study is the test facility for a megawatt PEM electrolysis stack with the presentation of the design processing and assembly of the main components of the facility and stack.
Solar Thermochemical Hydrogen Production in the USA
Jul 2021
Publication
Hydrogen produced from renewable energy has the potential to decarbonize parts of the transport sector and many other industries. For a sustainable replacement of fossil energy carriers both the environmental and economic performance of its production are important. Here the solar thermochemical hydrogen pathway is characterized with a techno-economic and life-cycle analysis. Assuming a further increase of conversion efficiency and a reduction of investment costs it is found that hydrogen can be produced in the United States of America at costs of 2.1–3.2 EUR/kg (2.4–3.6 USD/kg) at specific greenhouse gas emissions of 1.4 kg CO2-eq/kg. A geographical potential analysis shows that a maximum of 8.4 × 1011 kg per year can be produced which corresponds to about twelve times the current global and about 80 times the current US hydrogen production. The best locations are found in the Southwest of the US which have a high solar irradiation and short distances to the sea which is beneficial for access to desalinated water. Unlike for petrochemical products the transport of hydrogen could potentially present an obstacle in terms of cost and emissions under unfavorable circumstances. Given a large-scale deployment low-cost transport seems however feasible.
Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions
Feb 2022
Publication
Green hydrogen produced by power‐to‐gas will play a major role in the defossilization of the energy system as it offers both carbon‐neutral chemical energy and the chance to provide flexibility. This paper provides an extensive analysis of hydrogen production in decentralized energy systems as well as possible operation modes (H2 generation or system flexibility). Modelling was realized for municipalities—the lowest administrative unit in Germany thus providing high spatial resolution—in the linear optimization framework OEMOF. The results allowed for a detailed regional analysis of the specific operating modes and were analyzed using full‐load hours share of used negative residual load installed capacity and levelized cost of hydrogen to derive the operation mode of power‐to‐gas to produce hydrogen. The results show that power‐to‐gas is mainly characterized by constant hydrogen production and rarely provides flexibility to the system. Main drivers of this dominant operation mode include future demand for hydrogen and the fact that high full‐load hours reduce hydrogen‐production costs. However changes in the regulatory market and technical framework could promote more flexibility and support possible use cases for the central technology to succeed in the energy transition.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization
Feb 2020
Publication
Hydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side forming an explosive gas. In this study a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement permeation cell pressure current density and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V while above the cell polarization is decisive. In addition a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.
Steel Manufacturing Clusters in a Hydrogen Economy – Simulation of Changes in Location and Vertical Integration of Steel Production in Northwestern Europe
Feb 2022
Publication
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of sites and to regional policy. This paper describes an approach to model production stock invest for the steel industries in North-Western Europe. Current spatial structures are reproduced with capacity technical and energy efficiency data on the level of single facilities like blast furnaces. With the model developed both investments in specific technologies and at specific production sites can be modelled. The model is used to simulate different possible future scenarios. The case with a clear move to hydrogen-based production is compared to a reference scenario without technological shift. The scenarios show that existing trends like movement of production to the coast may be accelerated by the new technology but that sites in the hinterland can also adapt to a hydrogen economy. Possible effects of business cycles or a circular economy on regional value chains are explored with a Monte-Carlo analysis.
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen) whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed underlining the need for policy support.
Reliable Off-grid Power Supply Utilizing Green Hydrogen
Jun 2021
Publication
Green hydrogen produced from wind solar or hydro power is a suitable electricity storage medium. Hydrogen is typically employed as mid- to long-term energy storage whereas batteries cover short-term energy storage. Green hydrogen can be produced by any available electrolyser technology [alkaline electrolysis cell (AEC) polymer electrolyte membrane (PEM) anion exchange membrane (AEM) solid oxide electrolysis cell (SOEC)] if the electrolysis is fed by renewable electricity. If the electrolysis operates under elevated pressure the simplest way to store the gaseous hydrogen is to feed it directly into an ordinary pressure vessel without any external compression. The most efficient way to generate electricity from hydrogen is by utilizing a fuel cell. PEM fuel cells seem to be the most favourable way to do so. To increase the capacity factor of fuel cells and electrolysers both functionalities can be integrated into one device by using the same stack. Within this article different reversible technologies as well as their advantages and readiness levels are presented and their potential limitations are also discussed.
Potentials of Hydrogen Technologies for Sustainable Factory Systems
Mar 2021
Publication
The industrial sector is the world’s second largest emitter of greenhouse gases hence a methodology for decarbonizing factory systems is crucial for achieving global climate goals. Hydrogen is an important medium for the transition towards carbon neutral factories due to its broad applicability within the factory including its use in electricity and heat generation and as a process gas or fuel. One of the main challenges is the identification of economically and environmentally suitable design scenarios such as for the entire value chain for hydrogen generation and application. For example the infrastructure for renewable electricity hydrogen generation hydrogen conversion (e.g. into synthetic fuels) storage and transport systems as well as application in the factory. Due to the high volatility of energy generation and the related dynamic interdependencies within a factory system a valid technical economic and environmental evaluation of benefits induced by hydrogen technologies can only be achieved using digital factory models. In this paper we present a framework to integrate hydrogen technologies into factory systems. This enables decision makers to identify promising measures according to their expected impact and collect data for appropriate factory modelling. Furthermore a concept for factory modelling and simulation is presented and demonstrated in a case study from the electronics industry assessing the use of hydrogen for decentralized power and heat generation.
A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process
Jun 2021
Publication
In this review we provide a short overview of the Molecular Dynamics (MD) method and how it can be used to model the water splitting process in photoelectrochemical hydrogen production. We cover classical non-reactive and reactive MD techniques as well as multiscale extensions combining classical MD with quantum chemical and continuum methods. Selected examples of MD investigations of various aqueous semiconductor interfaces with a special focus on TiO2 are discussed. Finally we identify gaps in the current state-of-the-art where further developments will be needed for better utilization of MD techniques in the field of water splitting.
Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment
May 2018
Publication
Hydrogen mobility is one option for reducing local emissions avoiding greenhouse gas (GHG) emissions and moving away from a mainly oil-based transport system towards a diversification of energy sources. As hydrogen production can be based on a broad variety of technologies already existing or under development a comprehensive assessment of the different supply chains is necessary regarding not only costs but also diverse environmental impacts. Therefore in this paper a broad variety of hydrogen production technologies using different energy sources renewable and fossil are exemplarily assessed with the help of a Life Cycle Assessment and a cost assessment for Germany. As environmental impacts along with the impact category Climate change five more advanced impact categories are assessed. The results show that from an environmental point of view PEM and alkaline electrolysis are characterized by the lowest results in five out of six impact categories. Supply chains using fossil fuels in contrast have the lowest supply costs; this is true e.g. for steam methane reforming. Solar powered hydrogen production shows low impacts during hydrogen production but high impacts for transport and distribution to Germany. There is no single supply chain that is the most promising for every aspect assessed here. Either costs have to be lowered further or supply chains with selected environmental impacts have to be modified.
Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas
Nov 2021
Publication
Due to the increasing share of renewable energy sources in the electrical network the focus on decarbonization has extended into other energy sectors. The gas sector is of special interest because it can offer seasonal storage capacity and additional flexibility to the electricity sector. In this paper we present a new simulation method designed for hydrogen-enriched natural gas network simulation. It can handle different gas compositions and is thus able to accurately analyze the impact of hydrogen injections into natural gas pipelines. After describing the newly defined simulation method we demonstrate how the simulation tool can be used to analyze a hydrogen-enriched gas pipeline network. An exemplary co-simulation of coupled power and gas networks shows that hydrogen injections are severely constrained by the gas pipeline network highlighting the importance and necessity of considering different gas compositions in the simulation.
Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies?
Feb 2023
Publication
Power-to-X processes where renewable energy is converted into storable liquids or gases are considered to be one of the key approaches for decarbonizing energy systems and compensating for the volatility involved in generating electricity from renewable sources. In this context the production of “green” hydrogen and hydrogen-based derivatives is being discussed and tested as a possible solution for the energy-intensive industry sector in particular. Given the sharp ongoing increases in electricity and gas prices and the need for sustainable energy supplies in production systems non-energy-intensive companies should also be taken into account when considering possible utilization paths for hydrogen. This work focuses on the following three utilization paths: “hydrogen as an energy storage system that can be reconverted into electricity” “hydrogen mobility” for company vehicles and “direct hydrogen use”. These three paths are developed modeled simulated and subsequently evaluated in terms of economic and environmental viability. Different photovoltaic system configurations are set up for the tests with nominal power ratings ranging from 300 kWp to 1000 kWp. Each system is assigned an electrolyzer with a power output ranging between 200 kW and 700 kW and a fuel cell with a power output ranging between 5 kW and 75 kW. There are also additional variations in relation to the battery storage systems within these basic configurations. Furthermore a reference variant without battery storage and hydrogen technologies is simulated for each photovoltaic system size. This means that there are ultimately 16 variants to be simulated for each utilization path. The results show that these utilization paths already constitute a reasonable alternative to fossil fuels in terms of costs in variants with a suitable energy system design. For the “hydrogen as an energy storage system” path electricity production costs of between 43 and 79 ct/kWh can be achieved with the 750 kWp photovoltaic system. The “hydrogen mobility” is associated with costs of 12 to 15 ct/km while the “direct hydrogen use” path resulted in costs of 8.2 €/kg. Environmental benefits are achieved in all three paths by replacing the German electricity mix with renewable energy sources produced on site or by substituting hydrogen for fossil fuels. The results confirm that using hydrogen as a storage medium in manufacturing companies could be economically and environmentally viable. These results also form the basis for further studies e.g. on detailed operating strategies for hydrogen technologies in scenarios involving a combination of multiple utilization paths. The work also presents the simulation-based method developed in this project which can be transferred to comparable applications in further studies.
Study on the Use of Fuel Cells in Shipping
Jan 2017
Publication
Fuel Cells are a promising technology in the context of clean power sustainability and alternative fuels for shipping. Different specific developments on Fuel Cells are available today with research and pilot projects under evaluation that have revealed strong potential for further scaled up implementation. The EMSA Study on the use of Fuel Cells in Shipping has been the result of this Agency’s initiative under the agreement of the Commission and in support of EU Member States an important instrument developed in close partnership with DNV-GL.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
Notwithstanding the close dependency of Fuel Cell technology and the development of hydrogen fuel solutions different solutions are today in place making use of LNG methanol and other low flashpoint fuels. EMSA participates in support of the Commission in the 2nd phase development of the IGF Code where provisions for Fuel Cells are to be included as a new part of the text.
The EMSA Study on the use of Fuel Cells in Shipping includes a technology and regulatory review identifying gaps to be further explored the selection of the most promising Fuel Cell technologies for shipping and finally a generic Safety Assessment where the selected technologies are evaluated according to Risk & Safety aspects in generic ship design applications.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems
Jan 2019
Publication
This study discusses the potential of H2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process - steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane water electrolysis is a promising technology to reduce CO2 emissions of the hydrogen sector by up to 75% if the electrolysis system runs exclusively on electricity generated from renewable energy sources. In a future (2050) base-load operation mode emissions are comparable to the reference system.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
Cold Hydrogen Blowdown Release: An Inter-comparison Study
Sep 2021
Publication
Hydrogen dispersion in stagnant environment resulting from blowdown of a vessel storing the gas at cryogenic temperature is simulated using different CFD codes and modelling strategies. The simulations are based on the DISCHA experiments that were carried out by Karlsruhe Institute of Technology (KIT) and Pro-Science (PS). The selected test for the current study involves hydrogen release from a 2.815 dm3 volume tank with an initial pressure of 200 barg and temperature 80 K. During the release the hydrogen pressure in the tank gradually decreased. A total of about 139 gr hydrogen is released through a 4 mm diameter. The temperature time series and the temperature decay rate of the minimum value predicted by the different codes are compared with each other and with the experimentally measured ones. Recommendations for future experimental setup and for modeling approaches for similar releases are provided based on the present analysis. The work is carried out within the EU-funded project PRESLHY.
No more items...