China, People’s Republic
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022
Dec 2022
Publication
The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs seriously threatening the reliability and durability of the hydrogen system. Therefore it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007 especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications and the total number of citations of Japanese publications was 24589. Kyushu University was the most influential university and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author publishing 88 publications with a total of 2565 citations. The USA South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials” “Effect of hydrogen on mechanical properties of materials” “Effect of alloying elements or microstructure on hydrogen embrittlement” “Hydrogen transport” and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis” “Microstructure” “Hydrogen diffusion and transport” “Mechanical properties” “Hydrogen resistance” and so on. These covered the basic methods and purposes of HE research. Finally the distribution of the main subject categories of the publications was determined and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies
Mar 2023
Publication
In recent years the problem of environmental pollution especially the emission of greenhouse gases has attracted people’s attention to energy infrastructure. At present the fuel consumed by transportation mainly comes from fossil energy and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels taking into account the dual needs of transportation and environmental protection. However due to the low power density and high manufacturing cost of hydrogen fuel cells their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells then summarizes the existing hybrid power circuit topology categorizes the existing technical solutions and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management
Jan 2023
Publication
With the development of fuel cells multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency durability reliability and pollution-free. Accordingly the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly the MFCS applications are presented in high-power scenarios especially in transportation applications. Then to further investigate the MFCS MFCS including hydrogen and air subsystem thermal and water subsystem multi-stack architecture and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan cost and efficiency in the multi-stack fuel cell system. Finally the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.
Analysis of Crash Characteristics of Hydrogen Storage Structure of Hydrogen Powered UAV
Nov 2022
Publication
In the context of green aviation as an internationally recognized solution hydrogen energy is lauded as the “ultimate energy source of the 21st century” with zero emissions at the source. Developed economies with aviation industries such as Europe and the United States have announced hydrogen energy aviation development plans successively. The study and development of high-energy hydrogen fuel cells and hydrogen energy power systems have become some of the future aviation research focal points. As a crucial component of hydrogen energy storage and delivery the design and development of a safe lightweight and efficient hydrogen storage structure have drawn increasing consideration. Using a hydrogen-powered Unmanned Aerial Vehicle (UAV) as the subject of this article the crash characteristics of the UAV’s hydrogen storage structure are investigated in detail. The main research findings are summarized as follows: (1) A series of crash characteristics analyses of the hydrogen storage structure of a hydrogen-powered UAV were conducted and the Finite Element Analysis (FEA) response of the structure under different impact angles internal pressures and impact speeds was obtained and analyzed. (2) When the deformation of the hydrogen storage structure exceeds 50 mm and the strain exceeds 0.8 an initial crack will appear at this part of the hydrogen storage structure. The emergency release valve should respond immediately to release the gas inside the tank to avoid further damage. (3) Impact angle and initial internal pressure are the main factors affecting the formation of initial cracks.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Recent Advances of Metal Borohydrides for Hydrogen Storage
Aug 2022
Publication
Hydrogen energy is an excellent carrier for connecting various renewable energy sources and has many advantages. However hydrogen is flammable and explosive and its density is low and easy to escape which brings inconvenience to the storage and transportation of hydrogen. Therefore hydrogen storage technology has become one of the key steps in the application of hydrogen energy. Solid-state hydrogen storage method has a very high volumetric hydrogen density compared to the traditional compressed hydrogen method. The main issue of solid-state hydrogen storage method is the development of advanced hydrogen storage materials. Metal borohydrides have very high hydrogen density and have received much attention over the past two decades. However high hydrogen sorption temperature slow kinetics and poor reversibility still severely restrict its practical applications. This paper mainly discusses the research progress and problems to be solved of metal borohydride hydrogen storage materials for solid-state hydrogen storage.
Influence of Hydrogen Production in the CO2 Emissions Reduction of Hydrogen Mettalurgy Transformation in Iron and Steel Industry
Jan 2023
Publication
The transformation of hydrogen metallurgy is a principal means of promoting the iron and steel industry (ISI) in reaching peak and deep emissions reduction. However the environmental impact of different hydrogen production paths on hydrogen metallurgy has not been systemically discussed. To address this gap based on Long-range Energy Alternatives Planning System (LEAP) this paper constructs a bottom-up energy system model that includes hydrogen production iron and steel (IS) production and power generation. By setting three hydrogen production structure development paths namely the baseline scenario business-as-usual (BAU) scenario and clean power (CP) scenario the carbon dioxide (CO2) emissions impact of different hydrogen production paths on hydrogen metallurgy is carefully evaluated from the perspective of the whole industry and each IS production process. The results show that under the baseline scenario the hydrogen metallurgy transition will help the CO2 emissions of ISI peak at 2.19 billion tons in 2024 compared to 2.08 billion tons in 2020 and then gradually decrease to 0.78 billion tons in 2050. However different hydrogen production paths will contribute to the reduction or inhibit the reduction. In 2050 the development of electrolysis hydrogen production with renewable electricity will reduce CO2 emissions by an additional 48.76 million tons (under the CP scenario) while the hydrogen production mainly based on coal gasification and methane reforming will increase the additional 50.04 million tons CO2 emissions (under the BAU scenario). Moreover under the hydrogen production structure relying mainly on fossil and industrial by-products the technological transformation of blast furnace ironmaking with hydrogen injections will leak carbon emissions to the upstream energy processing and conversion process. Furthermore except for the 100% scrap based electric arc furnace (EAF) process the IS production process on hydrogen-rich shaft furnace direct reduced iron (hydrogen-rich DRI) have lower CO2 emissions than other processes. Therefore developing hydrogen-rich DRI will help the EAF steelmaking development to efficiently reduce CO2 emissions under scrap constraints.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Experimental Investigation of Stress Corrosion on Supercritical CO2 Transportation Pipelines Against Leakage for CCUS Applications
Nov 2022
Publication
Carbon Capture Utilization and Storage (CCUS) is one of the key technologies that will determine how humans address global climate change. For captured CO2 in order to avoid the complications associated with two-phase flow most carbon steel pipelines are operated in the supercritical state on a large scale. A pipeline has clear Stress Corrosion Cracking (SCC) sensitivity under the action of stress and corrosion medium which will generally cause serious consequences. In this study X70 steel was selected to simulate an environment in the process of supercritical CO2 transportation by using high-temperature high-pressure Slow Strain Rate Tensile (SSRT) tests and high-temperature high-pressure electrochemical test devices with different O2 and SO2 contents. Studies have shown that 200 ppm SO2 shows a clear SCC sensitivity tendency which is obvious when the SO2 content reaches 600 ppm. The SCC sensitivity increases with the increase of SO2 concentration but the increase amplitude decreases. With the help of advanced microscopic characterization techniques such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) through the analysis of fracture and side morphology the stress corrosion mechanism of a supercritical CO2 pipeline containing SO2 and O2 impurities was obtained by hydrogen embrittlement fracture characteristics. With the increase of SO2 content the content of Fe element decreases and the corrosion increases demonstrating that SO2 plays a leading role in electrochemical corrosion. This study further strengthens the theoretical basis of stress corrosion of supercritical CO2 pipelines plays an important role in preventing leakage of supercritical CO2 pipelines and will provide guidance for the industrial application of CCUS.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Study on the Effect of Second Injection Timing on the Engine Performances of a Gasoline/Hydrogen SI Engine with Split Hydrogen Direct Injecting
Oct 2020
Publication
Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore to investigate SHDI deeply a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5 five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD) which was the main factor affecting the engine performances. With SHDI since the HMD is manageable the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105◦ crank angle (CA) before top dead center (BTDC) the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI) the NOX CO and HC emissions with SHDI were reduced by 20% 40% and 72% respectively.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China
Apr 2023
Publication
A significant effort is required to reduce China’s dependency on fossil fuels while also supporting worldwide efforts to reduce climate change and develop hydrogen energy systems. A hydrogen economy must include renewable energy sources (RESs) which can offer a clean and sustainable energy source for producing hydrogen. This study uses an integrated fuzzy AHP–fuzzy TOPSIS method to evaluate and rank renewable energy sources for developing a hydrogen economy in China. This is a novel approach because it can capture the uncertainty and vagueness in the decision-making process and provide a comprehensive and robust evaluation of the alternatives. Moreover it considers multiple criteria and sub-criteria that reflect the environmental economic technical social and political aspects of RESs from the perspective of a hydrogen economy. This study identified five major criteria fifteen sub-criteria and six RES alternatives for hydrogen production. This integrated approach uses fuzzy AHP to evaluate and rank the criteria and sub-criteria and fuzzy TOPSIS to identify the most suitable and feasible RES. The results show that environmental economic and technical criteria are the most important criteria. Solar wind and hydropower are the top three RES alternatives that are most suitable and feasible. Furthermore biomass geo-thermal and tidal energy were ranked lower which might be due to the limitations and challenges in their adoption and performance in the context of the criteria and sub-criteria used for the analysis. This study’s findings add to the literature on guidelines to strategize for renewable energy adoption for the hydrogen economy in China.
Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges
Dec 2022
Publication
It is becoming increasingly important to develop effective combustion technologies for low calorific industrial gases (LCIG) because of the rising energy demand and environmental issues caused by the extensive use of fossil fuels. In this review the prospect of these opportunity fuels in China is discussed. Then the recent fundamental and engineering studies of LCIG combustion are summarized. Specifically the differences between LCIG and traditional fuels in the composition and fundamental combustion characteristics are described. The state-of-the-art combustion strategies for burning LCIG are reviewed including porous media combustion flameless combustion oxy-fuel combustion and dual-fuel combustion. The technical challenges and further development needs for efficient LCIG combustion are also discussed.
Self-Sustaining Control Strategy for Proton-Exchange Membrane Electrolysis Devices Based on Gradient-Disturbance Observation Method
Mar 2023
Publication
This paper proposes a self-sustaining control model for proton-exchange membrane (PEM) electrolysis devices aiming to maintain the temperature of their internal operating environment and thus improve the electrolysis efficiency and hydrogen production rate. Based on the analysis of energy–substance balance and electrochemical reaction characteristics an electrothermal-coupling dynamic model for PEM electrolysis devices was constructed. Considering the influence of the input energy–substance and the output hydrogen and oxygen of PEM electrolysis devices on the whole dynamic equilibrium process the required electrical energy and water molar flow rate are dynamically adjusted so that the temperature of the cathode and the anode is maintained near 338.15 K. The analytical results show that the hydrogen production rate and electrolysis efficiency are increased by 0.275 mol/min and 3.9% respectively by linearly stacking 100 PEM electrolysis devices to form a hydrogen production system with constant cathode and anode operating temperatures around 338.15 K in the self-sustaining controlled mode
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Low Carbon Economic Dispatch of Integrated Energy Systems Considering Utilization of Hydrogen and Oxygen Energy
Mar 2024
Publication
Power-to-gas (P2G) facilities use surplus electricity to convert to natural gas in integrated energy systems (IES) increasing the capacity of wind power to be consumed. However the capacity limitation of P2G and the antipeaking characteristic of wind power make the wind abandonment problem still exist. Meanwhile the oxygen generated by P2G electrolysis is not fully utilized. Therefore this study proposes a low-carbon economic dispatch model considering the utilization of hydrogen and oxygen energy. First the two-stage reaction model of P2G is established and the energy utilization paths of hydrogen blending and oxygen-rich deep peaking are proposed. Specifically hydrogen energy is blended into the gas grid to supply gas-fired units and oxygen assists oxygenrich units into deep peaking. Subsequently the stochastic optimization is used to deal with the uncertainty of the system and the objective function and constraints of the IES are given to establish a low-carbon dispatch model under the energy utilization model. Finally the effectiveness of the proposed method is verified based on the modified IEEE 39-node electric network 20-node gas network and 6-node heat network models.
An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan
Dec 2022
Publication
Hydrogen energy is considered one of the main measures of zero carbonization in energy systems but high equipment and hydrogen costs hinder the development of hydrogen energy technology. The objectives of this study are to quantify the environmental advantages of hydrogen energy through a carbon tax and study the application potential of hydrogen energy technology in a regional distributed energy system (RDES). In this study various building types in the smart community covered by Japan’s first hydrogen energy pipeline are used as an example. First ten buildings of five types are selected as the research objectives. Subsequently two comparative system models of a regional distributed hydrogen energy system (RDHES) and an RDES were established. Then by studying the optimal RDHES and RDES configuration and combining the prediction of future downward trends of fuel cell (FC) costs and energy carbon emissions the application effect of FC and hydrogen storage (HS) technologies on the demand side was analyzed. Finally the adaptability of the demand-side hydrogen energy system was studied by analyzing the load characteristics of different types of buildings. The results show that when the FC price is reduced to 1.5 times that of the internal combustion engine (ICE) the existing carbon tax system can sufficiently support the RDHES in gaining economic advantages in some regions. Notably when the carbon emissions of the urban energy system are reduced the RDHES demonstrates stronger anti-risk ability and has greater suitability for promotion in museums and shopping malls. The conclusions obtained in this study provide quantitative support for hydrogen energy promotion policies on the regional demand side and serve as a theoretical reference for the design and adaptability research of RDHESs.
Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power
Apr 2023
Publication
Using photovoltaic (PV) energy to produce hydrogen through water electrolysis is an environmentally friendly approach that results in no contamination making hydrogen a completely clean energy source. Alkaline water electrolysis (AWE) is an excellent method of hydrogen production due to its long service life low cost and high reliability. However the fast fluctuations of photovoltaic power cannot integrate well with alkaline water electrolyzers. As a solution to the issues caused by the fluctuating power a hydrogen production system comprising a photovoltaic array a battery and an alkaline electrolyzer along with an electrical control strategy and energy management strategy is proposed. The energy management strategy takes into account the predicted PV power for the upcoming hour and determines the power flow accordingly. By analyzing the characteristics of PV panels and alkaline water electrolyzers and imposing the proposed strategy this system offers an effective means of producing hydrogen while minimizing energy consumption and reducing damage to the electrolyzer. The proposed strategy has been validated under various scenarios through simulations. In addition the system’s robustness was demonstrated by its ability to perform well despite inaccuracies in the predicted PV power.
Low Carbon Optimal Operation of Integrated Energy System Based on Concentrating Solar Power Plant and Power to Hydrogen
Mar 2023
Publication
A new integrated energy system (IES) framework is created in order to encourage the consumption of renewable energy which is represented by wind and solar energy and lower carbon emissions. The connection between the units in the composite system is examined in this research. In-depth analysis is done on how energy is transferred between electricity heat gas and hydrogen. The system model and constraints are used to build an objective function with the lowest total operating cost. The calculation of carbon trading includes the ladder carbon trading method. And set up 6 cases for analysis which verifies the effectiveness of the participation of the concentrated solar power plant (CSPP) in the heat supply and power to hydrogen system (P2HS) in reducing the total operating cost of the system reducing wind curtailment and light curtailment and reducing carbon emissions. Under the model considered in this paper reduces the total operating cost reduces by 27.04% when the concentrated solar power plant is involved in the supply of thermal load. And the carbon emission is reduced by 14.529%. Compared with the traditional power to gas considers the power to hydrogen system in this paper which reduces the total operating cost by 4.79%.
Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle
Jun 2021
Publication
For commercial applications the durability and economy of the fuel cell hybrid system have become obstacles to be overcome which are not only affected by the performance of core materials and components but also closely related to the energy management strategy (EMS). This paper takes the 7.9 t fuel cell logistics vehicle as the research object and designed the EMS from two levels of qualitative and quantitative analysis which are the composite fuzzy control strategy optimized by genetic algorithm and Pontryagin’s minimum principle (PMP) optimized by objective function respectively. The cost function was constructed and used as the optimization objective to prolong the life of the power system as much as possible on the premise of ensuring the fuel economy. The results indicate that the optimized PMP showed a comprehensive optimal performance the hydrogen consumption was 3.481 kg/100 km and the cost was 13.042 $/h. The major contribution lies in that this paper presents a method to evaluate the effect of different strategies on vehicle performance including fuel economy and durability of the fuel cell and battery. The comparison between the two totally different strategies helps to find a better and effective solution to reduce the lifetime cost.
A Study on the Joule-Thomson Effect of During Filling Hydrogen in High Pressure Tank
Dec 2022
Publication
With the development of the hydrogen fuel cell automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogenation process of hydrogenation station. Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. At present the technological difficulty of hydrogenation is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. The Joule-Thomson (JT) effect occurs when high-pressure hydrogen gas passes through the valve assembly which may lead to an increase in hydrogen temperature. The JT effect is generally reflected by the JT coefficient. According to the high pressure hydrogen in the pressure reducing valve the corresponding JT coefficients were calculated by using the VDW equation RK equation SRK equation and PR equation and the expression of JT effect temperature rise was deduced which revealed the hydrogen temperature variation law in the process of reducing pressure. Make clear the relationship between charging parameters and temperature rise in the process of decompression; the flow and thermal characteristics of hydrogen in the process of decompression are revealed. This study provides basic support for experts to achieve throttling optimization of related pressure control system in hydrogen industry
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
Nickel Sulfides Supported by Carbon Spheres as Efficient Catalysts for Hydrogen Evolution Reaction
Jun 2021
Publication
Ni3S2 and NiS supported on carbon spheres are successfully synthesized by a facile hydrothermal method. And then a series of physical characterizations included XRD (X-ray diffraction) EDS (energy dispersive spectroscopy) FESEM (field emission scanning electron microscopy) and XPS (X-ray photo-electron spectroscopy) were used to analyze the samples. XRD was used to confirm that NiNi3S2 S2 and NiS were successfully fabricated. FESEM indicated that Ni3S2 and NiS disperse well on carbon spheres. Electrochemical tests showed that nickel sulfides supported by carbon spheres exhibited excellent hydrogen evolution performance. The excellent catalytic activity is attributed to the synergistic effect of carbon spheres and transition metal sulfides of which the carbon spheres act to enhance the electrical conductivity and the dispersion of Ni3S2 and NiS thus providing more active sites for the hydrogen evolution reaction.
In Situ Irradiated X-Ray Photoelectron Spectroscopy on Ag-WS2 Heterostructure For Hydrogen Production Enhancement
Oct 2020
Publication
The hot electron transition of noble materials to catalysis accelerated by localized surface plasmon resonances (LSPRs) was detected by in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in this article. This paper synthesized an Ag Nanowire (AgNW) @ WS2 core-shell structure with an ultra-thin shell of WS2(3 ∼ 7 nm) and characterized its photocatalytic properties. The AgNW@WS2 core-shell structure exhibited different surface-enhanced Raman spectroscopy (SERS) effects by changing shell thickness indicating that the effect of AgNW could be controlled by WS2 shell. Furthermore the hydrogen production of AgNW@WS2 could reach to 356% of that of pure WS2. The hot electrons arising from the LSPRs effect broke through the Schottky barrier between WS2 and AgNW and transferred to the WS2 shell whose photocatalytic effect was thus enhanced. In addition when the LSPRs effect was intensified by reducing the shell thickness the hot electron transition of noble materials to catalysis was accelerated.
Physicochemical Properties of Proton-conducting SmNiO3 Epitaxial Films
Mar 2019
Publication
Proton conducting SmNiO3 (SNO) thin films were grown on (001) LaAlO3 substrates for systematically investigating the proton transport properties. X-ray Diffraction and Atomic Force Microscopy studies reveal that the as-grown SNO thin films have good single crystallinity and smooth surface morphology. The electrical conductivity measurements in air indicate a peak at 473 K in the temperature dependence of the resistance of the SNO films probably due to oxygen loss on heating. A Metal-Insulator-Transition occurs at 373 K for the films after annealing at 873 K in air. In a hydrogen atmosphere (3% H2/97% N2) an anomalous peak in the resistance is found at 685 K on the first heating cycle. Electrochemical Impedance Spectroscopy studies as a function of temperature indicate that the SNO films have a high ionic conductivity (0.030 S/cm at 773 K) in a hydrogen atmosphere. The activation energy for proton conductivity was determined to be 0.23 eV at 473–773 K and 0.37 eV at 773–973 K respectively. These findings demonstrate that SNO thin films have good proton conductivity and are good candidate electrolytes for low temperature proton-conducting Solid Oxide Fuel Cells.
The Path to Carbon Neutrality in China: A Paradigm Shift in Fossil Resource Utilization
Jan 2022
Publication
The Paris Agreement has set the goal of carbon neutrality to cope with global climate change. China has pledged to achieve carbon neutrality by 2060 which will strategically change everything in our society. As the main source of carbon emissions the consumption of fossil energy is the most profoundly affected by carbon neutrality. This work presents an analysis of how China can achieve its goal of carbon neutrality based on its status of fossil energy utilization. The significance of transforming fossils from energy to resource utilization in the future is addressed while the development direction and key technologies are discussed.
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
Integral Sliding Mode Control for Maximum Power Point Tracking in DFIG Based Floating Offshore Wind Turbine and Power to Gas
Jun 2021
Publication
This paper proposes a current decoupling controller for a Doubly-fed Induction Generator (DFIG) based on floating offshore wind turbine and power to gas. The proposed controller realizes Maximum Power Point Tracking (MPPT) through integral sliding mode compensation. By using the internal model control strategy an open-loop controller is designed to ensure that the system has good dynamic performance. Furthermore using the integral Sliding Mode Control (SMC) strategy a compensator is designed to eliminate the parameter perturbation and external disturbance of the open-loop control. The parameters of the designed controller are designed through Grey Wolf Optimization (GWO). Simulation results show that the proposed control strategy has better response speed and smaller steady-state error than the traditional control strategy. This research is expected to be applied to the field of hydrogen production by floating offshore wind power.
What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?
Oct 2022
Publication
Green hydrogen has become the key to social low-carbon transformation and is fully linked to zero carbon emissions. The carbon emissions trading market is a policy tool used to control carbon emissions using a market-oriented mechanism. Building a modular carbon trading center for the hydrogen energy industry would greatly promote the meeting of climate targets. Based on this a “green hydrogen market—national carbon trading market–electricity market” coupling mechanism is designed. Then the “green hydrogen market—national carbon trading market–electricity market” mechanism is modeled and simulated using system dynamics. The results are as follows: First coupling between the green hydrogen market carbon trading market and electricity market can be realized through green hydrogen certification and carbon quota trading. It is found that the coupling model is feasible through simulation. Second simulation of the basic scenario finds that multiple-market coupling can stimulate an increase in carbon price the control of thermal power generation and an increase in green hydrogen production. Finally the proportion of the green hydrogen certification the elimination mechanism of outdated units and the quota auction mechanism will help to form a carbon pricing mechanism. This study enriches the green hydrogen trading model and establishes a multiple-market linkage mechanism.
Numerical Study of Combustion and Emission Characteristics for Hydrogen Mixed Fuel in the Methane-Fueled Gas Turbine Combustor
Jan 2023
Publication
The aeroderivative gas turbine is widely used as it demonstrates many advantages. Adding hydrogen to natural gas fuels can improve the performance of combustion. Following this the effects of hydrogen enrichment on combustion characteristics were analyzed in an aeroderivative gas turbine combustor using CFD simulations. The numerical model was validated with experimental results. The conditions of the constant mass flow rate and the constant energy input were studied. The results indicate that adding hydrogen reduced the fuel residues significantly (fuel mass at the combustion chamber outlet was reduced up to 60.9%). In addition the discharge of C2H2 and other pollutants was reduced. Increasing the volume fraction of hydrogen in the fuel also reduced CO emissions at the constant energy input while increasing CO emissions at the constant fuel mass flow rate. An excess in the volume fraction of added hydrogen changed the combustion mode in the combustion chamber resulting in fuel-rich combustion (at constant mass flow rate) and diffusion combustion (at constant input power). Hydrogen addition increased the pattern factor and NOx emissions at the outlet of the combustion chamber.
Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Mar 2020
Publication
Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications due to its many advantages. However the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail with computational fluid dynamics. The results showed that the best operating parameters were the counter flow water-to-alcohol (W/A) of 1.3 exhaust inlet velocity of 1.1 m/s and exhaust inlet temperature of 773 K when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K respectively. At this condition a methanol conversion of 99.4% and thermal efficiency of 28% were achieved together with a hydrogen content of 69.6%.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Hydrogen Permeation Behavior of QP1180 High Strength Steel in Simulated Coastal Atmosphere
Mar 2022
Publication
The hydrogen permeation behavior of QP1180 high strength steel for automobile was studied in simulate coastal atmosphere environment by using Devanathan-Stachurski dual electrolytic cell the cyclic corrosion test (CCT) thermal desorption spectrometry (TDS) and electrochemical measurement methods. The current density of hydrogen permeation generally increases with reducing the relative humidity from 95% to 50% and periodically changes in the CCT process. These mainly result from the evolution of corrosion and rust layer on the specimen surface with the atmospheric humidity and intermittent salt spraying. The contents of diffusible hydrogen and non-diffusible hydrogen in the steel enlarge slightly in the CCT process. The plastic deformation about 11.3% results in much higher diffusible hydrogen content in steel but noticeably reduces the hydrogen permeation current and almost has no influence on the non-diffusible hydrogen content. The combination of double electrolytic cell and standard cyclic corrosion test can effectively characterize the hydrogen permeation of high strength steel in atmospheric service environments.
Coupling Combustion Simulation and Primary Evaluation of an Asymmetric Motion Diesel Pilot Hydrogen Engine
Jul 2022
Publication
The thermal efficiency and combustion of conventional hydrogen engines cannot be optimized and improved by its symmetric reciprocating. This article introduces an asymmetric motion hydrogen engine (AHE) and investigates its combustion characteristics using diesel pilot ignition. A dynamic model is firstly proposed to describe the asymmetric motion of the AHE and then it is coupled into a multidimensional model for combustion simulation. The effect of asymmetric motion on the AHE combustion is also analyzed by comparing with a corresponding conventional symmetric hydrogen engine (SHE). The results show that the AHE moves slower in compression and faster in expansion than the SHE which brings about higher hydrogen-air mixing level for combustion. The asymmetric motion delays diesel injection to ignite the AHE and its combustion appears later than the SHE which leads to lower pressure and temperature for reducing NO formation. However the AHE faster expansion has a more severe post-combustion effect to reduce isovolumetric heat release level and decrease the energy efficiency.
High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis
Mar 2022
Publication
Water electrolysis (WE) is a highly promising approach to producing clean hydrogen. Medium-temperature WE (100–350 ◦C) can improve the energy efficiency and utilize the low-grade water vapor. Therefore a high-temperature proton-conductive membrane is desirable to realize the medium-temperature WE. Here we present a polyvinyl chloride (PVC)-poly(4vinylpyridine) (P4VP) hybrid membrane by a simple cross-linking of PVC and P4VP. The pyridine groups of P4VP promote the loading rate of phosphoric acid which delivers the proton conductivity of the PVC-P4VP membrane. The optimized PVC-P4VP membrane with a 1:2 content ratio offers the maximum proton conductivity of 4.3 × 10−2 S cm−1 at 180 ◦C and a reliable conductivity stability in 200 h at 160 ◦C. The PVC-P4VP membrane electrode is covered by an IrO2 anode and a Pt/C cathode delivers not only the high water electrolytic reactivity at 100–180 ◦C but also the stable WE stability at 180 ◦C.
Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field
Dec 2020
Publication
China has become a major market for hydrogen used in fuel cells in the transportation field. It is key to control the cost of hydrogen to open up the Chinese market. The development status and trends of China’s hydrogen fuel industry chain were researched. A hydrogen energy cost model was established in this paper from five aspects: raw material cost fixed cost of production hydrogen purification cost carbon trading cost and transportation cost. The economic analysis of hydrogen was applied to hydrogen transported in the form of high-pressure hydrogen gas or cryogenic liquid hydrogen and produced by natural gas coal and electrolysis of water. It was found that the cost of hydrogen from natural gas and coal is currently lower while it is greatly affected by the hydrogen purification cost and the carbon trading price. Considering the impact of future production technologies raw material costs and rising requirements for sustainable energy development on the hydrogen energy cost it is recommended to use renewable energy curtailment as a source of electricity and multi-stack system electrolyzers as large-scale electrolysis equipment in combination with cryogenic liquid hydrogen transportation or on-site hydrogen production. Furthermore participation in electricity market-oriented transactions cross-regional transactions and carbon trading can reduce the cost of hydrogen. These approaches represent the optimal method for obtaining inexpensive hydrogen.
Modeling of Unintended Hydrogen Releases from a Fuel Cell Tram
Sep 2021
Publication
Hydrogen is a promising alternative energy carrier that has been increasingly used in industry especially the transportation sector to fuel vehicles through fuel cells. Hydrogen fuel cell vehicles usually have high pressure on-board storage tanks which take up large spaces to provide comparable ranges as current fossil fuel vehicles because of the low volumetric energy density of hydrogen. Therefore hydrogen is also appropriate for large heavy-duty vehicles that have more space than passenger vehicles.
Hydrogen Inhibition as Explosion Prevention in Wet Metal Dust Removal Systems
Mar 2022
Publication
Hydrogen energy attracts an amount of attention as an environmentally friendly and sustainable energy source. However hydrogen is also flammable. Hydrogen fires and explosions might occur in wet-dust-removal systems if accumulated aluminum dust reacts with water. Hydrogen inhibition is a safe method to address these issues. For this purpose we used sodium citrate a renewable and nontoxic raw material to inhibit H2 formation. Specifically hydrogen inhibition experiments with sodium citrate were carried out using custom-built equipment developed by our research group. When the concentration of sodium citrate solution was in the range of 0.4–4.0 g/L a protective coating was formed on the surface of the Al particles which prevented them from contacting with water. The inhibitory effect was achieved when the concentration of sodium citrate was in a certain range and too much or too little addition may reduce the inhibitory effect. In this paper we also discuss the economic aspects of H2 inhibition with this method because it offers excellent safety advantages and could be incorporated on a large scale. Such an intrinsic safety design of H2 inhibition to control explosions in wet-dust-removal systems could be applied to ensure the safety of other systems such as nuclear reactors.
Numerical Simulation on Hydrogen Leakage and Dispersion Behavior in Hydrogen Energy Infrastructures
Sep 2021
Publication
Unexpected hydrogen leakage may occur in the production storage transportation and utilization of hydrogen. The lower flammability limit (LFL) for the hydrogen is 4% in air. The combustion and explosion of hydrogen-air mixture poses potential hazards to personnel and property. In this study unintended release of hydrogen from a hydrogen fuel cell forklift vehicle inside a enclosed warehouse is simulated by fireFoam which is an LES Navier-Stokes CFD solver. The simulation results are verified by experimental data. The variation of hydrogen concentration with time and the isosurface of hydrogen concentration of 4% vol. are given. Furthermore the leakage of hydrogen from a storage tanks in a hydrogen refueling station is simulated and the evolution of the isosurface of hydrogen concentration of 4% vol. is given which provides a quantitative guidence for determination the hazardous area after the leakage of hydrogen.
Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective
Jun 2020
Publication
Hydrogen fuel cell vehicle (FCV) technology has significant implications on energy security and environmental protection. In the past decade China has made great progress in the hydrogen and FCV industry considering both the government’s policy issuances and enterprises’ production. However there are still some technological and cost challenges obstructing the commercialization of FCVs. Herein the status of China’s hydrogen FCV industry is analyzed comprehensively from three perspectives: policy support market application and technology readiness level. The unique characteristics and key issues in each part of the industry chain are emphasized. Furthermore the energy environmental and economic performances of FCV in the life-cycle perspective are reviewed and summarized based on pre-existing literature and reports. The life-cycle analysis of hydrogen and FCV indicates that the energy and environmental impacts of FCVs are highly related to the sources of hydrogen. With the combination of industry status and technology performances it is highlighted that technology advancements in hydrogen production and fuel cells and the optimization of the manufacturing processes for fuel cell systems are equally essential in the development of hydrogen FCVs.
Recent Development of Biomass Gasification for H2 Rich Gas Production
Mar 2022
Publication
Biomass gasification for hydrogen (H2) production provides outstanding advantages in terms of renewable energy resources carbon neutral high efficiency and environmental benefits. However the factors influencing H2 production from biomass gasification are complex which makes determining the optimal operating conditions challenging. Biomass gasification also poses challenges owing to the high associated tar content and low gas yield which need to be overcome. This review summarizes the influence of the gasification parameters on H2 production. Catalytic gasification technology and some of the latest catalysts such as composites and special structure catalysts are also summarized herein based on the requirements of high-purity H2 production. Moreover novel technologies such as staged gasification chemical looping gasification and adsorption-enhanced reforming for producing H2 rich gas are introduced. Finally the challenges and prospects associated with biomass gasification for H2 production are presented.
A Numerical Investigation on De-NOx Technology and Abnormal Combustion Control for a Hydrogen Engine with EGR System
Sep 2020
Publication
The combustion emissions of the hydrogen-fueled engines are very clean but the problems of abnormal combustion and high NOx emissions limit their applications. Nowadays hydrogen engines use exhaust gas recirculation (EGR) technology to control the intensity of premixed combustion and reduce the NOx emissions. This study aims at improving the abnormal combustion and decreasing the NOx emissions of the hydrogen engine by applying a three-dimensional (3D) computational fluid dynamics (CFD) model of a single-cylinder hydrogen-fueled engine equipped with an EGR system. The results indicated that peak in-cylinder pressure continuously increased with the increase of the ignition advance angle and was closer to the top dead center (TDC). In addition the mixture was burned violently near the theoretical air–fuel ratio and the combustion duration was shortened. Moreover the NOx emissions the average pressure and the in-cylinder temperature decreased as the EGR ratio increased. Furthermore increasing the EGR ratio led to an increase in the combustion duration and a decrease in the peak heat release rate. EGR system could delay the spontaneous combustion reaction of the end-gas and reduce the probability of knocking. The pressure rise rate was controlled and the in-cylinder hot spots were reduced by the EGR system which could suppress the occurrence of the pre-ignition in the hydrogen engine.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Mar 2022
Publication
Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However due to high installation investment and operating costs the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover to acquire the optimization constraints of hydrogen demand this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid a daily hydrogen generation plan is obtained as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs compared with previous configuration methods that only consider investment costs or operating costs the proposed OPT-ISL method has the least 8.1 and 10.5% less respectively. Moreover the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years a decrease of 29.7% so that the HRS could recover its costs in less time.
Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage
Apr 2022
Publication
A 2-D numerical simulation model was established based on a small-sized metal hydride storage tank and the model was validated by the existing experiments. An external cooling bath was equipped to simulate the heating effects of hydrogen absorption reactions. Furthermore both the type and the flow rate of the cooling fluids in the cooling bath were altered so that changes in temperature and hydrogen storage capacity in the hydrogen storage model could be analyzed. It is demonstrated that the reaction rate in the center of the hydrogen storage tank gradually becomes lower than that at the wall surface. When the flow rate of the fluid is small significant differences can be found in the cooling liquid temperature at the inlet and the outlet cooling bath. In areas adjacent to its inlet the reaction rate is higher than that at the outlet and a better cooling effect is produced by water. As the flow rate increases the total time consumed by hydrogen adsorption reaction is gradually reduced to a constant value. At the same flow rate the wall surface of the tank shows a reaction rate insignificantly different from that in its center provided that cooling water or oil coolant is replaced with air.
No more items...