China, People’s Republic
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redox activity and stability of OCs. In this paper the development of the OCs for hydrogen production from CLWS were discussed. Effects of supports and additives on the performances of OCs were compared based on redox reactions in CLWS. Fe-based OCs with CeO2 Al2O3 ZrO2 CuO MoO3 Rh etc. are very attractive for the CLWS process. Issues and challenges for the development of OCs were analyzed.
Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen
Oct 2020
Publication
In some areas the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine photovoltaic panels a battery an electrolyzer a hydrogen storage tank a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.
Review of the Hydrogen Permeability of the Liner Material of Type IV On-Board Hydrogen Storage Tank
Aug 2021
Publication
The hydrogen storage tank is a key parameter of the hydrogen storage system in hydrogen fuel cell vehicles (HFCVs) as its safety determines the commercialization of HFCVs. Compared with other types the type IV hydrogen storage tank which consists of a polymer liner has the advantages of low cost lightweight and low storage energy consumption but meanwhile higher hydrogen permeability. A detailed review of the existing research on hydrogen permeability of the liner material of type IV hydrogen storage tanks can improve the understanding of the hydrogen permeation mechanism and provide references for following-up researchers and research on the safety of HFCVs. The process of hydrogen permeation and test methods are firstly discussed in detail. This paper then analyzes the factors that affect the process of hydrogen permeation and the barrier mechanism of the liner material and summarizes the prediction models of gas permeation. In addition to the above analysis and comments future research on the permeability of the liner material of the type IV hydrogen storage tank is prospected.
Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage
Oct 2021
Publication
This paper designs the integrated charging station of PV and hydrogen storage based on the charging station. The energy storage system includes hydrogen energy storage for hydrogen production and the charging station can provide services for electric vehicles and hydrogen vehicles at the same time. To improve the independent energy supply capacity of the hybrid charging station and reduce the cost the components are reasonably configured. To minimize the configuration cost of the integrated charging station and the proportion of power purchase to the demand of the charging station the energy flow strategy of the integrated charging station is designed and the optimal configuration model of optical storage capacity is constructed. The NSGA-II algorithm optimizes the non-inferior Pareto solution set and a fuzzy comprehensive evaluation evaluates the optimal configuration.
Reversible Solid-oxide Cell Stack Based Power-to-x-to-power Systems: Comparison of Thermodynamic Performance
Jun 2020
Publication
The increasing penetration of variable renewable energies poses new challenges for grid management. The economic feasibility of grid-balancing plants may be limited by low annual operating hours if they work either only for power generation or only for power storage. This issue might be addressed by a dual-function power plant with power-to-x capability which can produce electricity or store excess renewable electricity into chemicals at different periods. Such a plant can be uniquely enabled by a solid-oxide cell stack which can switch between fuel cell and electrolysis with the same stack. This paper investigates the optimal conceptual design of this type of plant represented by power-to-x-to-power process chains with x being hydrogen syngas methane methanol and ammonia concerning the efficiency (on a lower heating value) and power densities. The results show that an increase in current density leads to an increased oxygen flow rate and a decreased reactant utilization at the stack level for its thermal management and an increased power density and a decreased efficiency at the system level. The power-generation efficiency is ranked as methane (65.9%) methanol (60.2%) ammonia (58.2%) hydrogen (58.3%) syngas (53.3%) at 0.4 A/cm2 due to the benefit of heat-to-chemical-energy conversion by chemical reformulating and the deterioration of electrochemical performance by the dilution of hydrogen. The power-storage efficiency is ranked as syngas (80%) hydrogen (74%) methane (72%) methanol (68%) ammonia (66%) at 0.7 A/cm2 mainly due to the benefit of co-electrolysis and the chemical energy loss occurring in the chemical synthesis reactions. The lost chemical energy improves plant-wise heat integration and compensates for its adverse effect on power-storage efficiency. Combining these efficiency numbers of the two modes results in a rank of round-trip efficiency: methane (47.5%)>syngas (43.3%) ≈ hydrogen (42.6%)>methanol (40.7%)>ammonia (38.6%). The pool of plant designs obtained lays the basis for the optimal deployment of this balancing technology for specific applications.
Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses
Jul 2021
Publication
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement (HE) indexes. Moreover the transition in the microstructural fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed. The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE mechanism. According to the experimental testing the coupled problem of stress field and hydrogen diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was adopted and the initial TSL parameters from the best fit to the load-displacement and J-integral experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence in the TSL and to estimate the initial hydrogen concentration based on matching numerical and experimental load-line displacement curves with hydrogen. The simulation results show that the general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is almost the same as that obtained from the experimental data but in full agreement the computational CTOD values being slightly higher. Comparative analysis of numerical and experimental results shows that the coupled model can provide design and prediction to calculate hydrogen-assisted fracture behavior prior to extensive laboratory testing provided that the material properties and properly calibrated TSL parameters are known.
Comprehensive Performance Evaluation of Densified Liquid Hydrogen/Liquid Oxygen as Propulsion Fuel
Jan 2022
Publication
Densified liquid hydrogen/liquid oxygen is a promising propulsion fuel in the future. In order to systematically demonstrate the benefits and challenges of densified liquid hydrogen/liquid oxygen a transient thermodynamical model considering the heat leakage temperature rise engine thrust pressurization pressure of the tank and wall thickness of tank is developed in the present paper and the performance of densified liquid hydrogen/liquid oxygen as propulsion fuel is further evaluated in actual application. For liquid hydrogen/liquid oxygen tanks at different structural dimensions the effects of many factors such as temperature rise during propellant ground parking lift of engine thrust mass reduction of the tank structure and extension of spacecraft in‐orbit time are analyzed to demonstrate the comprehensive performance of liquid hydrogen/liquid oxygen after densification. Meanwhile the problem of subcooling combination matching of liquid hydro‐ gen/liquid oxygen is proposed for the first time. Combining the fuel consumption and engine thrust lifting the subcooling combination matching of liquid hydrogen/liquid oxygen at different mixing ratios and constant mixing ratios are discussed respectively. The results show that the relative engine thrust enhances by 6.96% compared with the normal boiling point state in the condition of slush hydrogen with 50% solid content and enough liquid oxygen. The in‐orbit time of spacecraft can extend about 2–6.5 days and 24–95 days for slush hydrogen with 50% solid content and liquid oxygen in the triple point state in different cryogenic tanks respectively. Due to temperature rise during parking the existing adiabatic storage scheme and filling scheme for densification LH2 need to be redesigned and for densification LO2 are suitable. It is found that there is an optimal subcooling matching relation after densification of liquid hydrogen/liquid oxygen as propulsion fuel. In other words the subcooling temperature of liquid hydrogen/liquid oxygen is not the lower the bet‐ ter but the matching relationship between LH2 subcooling degree and LO2 subcooling degree needs to be considered at the same time. It is necessary that the LO2 was cooled to 69.2 K and 54.5 K when the LH2 of 13.9 K and SH2 with 45% was adopted respectively. This research provides theoretical support for the promotion and application of densification cryogenic propellants.
Progress and Prospects of Hydrogen Production: Opportunities and challenges
Jan 2021
Publication
This study presents an overview of the current status of hydrogen production in relation to the global requirement for energy and resources. Subsequently it symmetrically outlines the advantages and disadvantages of various production routes including fossil fuel/biomass conversion water electrolysis microbial fermentation and photocatalysis (PC) in terms of their technologies economy energy consumption and costs. Considering the characteristics of hydrogen energy and the current infrastructure issues it highlights that onsite production is indispensable and convenient for some special occasions. Finally it briefly summarizes the current industrialization situation and presents future development and research directions such as theoretical research strengthening renewable raw material development process coupling and sustainable energy use.
Comparison Between Hydrogen Production by Alkaline Water Electrolysis and Hydrogen Production by PEM Electrolysis
Sep 2021
Publication
Hydrogen is an ideal clean energy source that can be used as an energy storage medium for renewable energy sources. The water electrolysis hydrogen production technology which is one of the mainstream hydrogen production methods can be used to produce high-purity hydrogen and other energy sources can be converted into hydrogen storage by electrolysis. Hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis are all water electrolysis hydrogen production technologies that have been industrially applied. From the application point of view the paper compares the working principle of the two kinds of electrolyzers the process flow of hydrogen production equipment advantages and disadvantages. This article provides a reference for relevant researchers.
Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Jul 2021
Publication
Liquid hydrogen is the main fuel of large-scale low-temperature heavy-duty rockets and has become the key direction of energy development in China in recent years. As an important application carrier in the large-scale storage and transportation of liquid hydrogen liquid hydrogen cryogenic storage and transportation containers are the key equipment related to the national defense security of China’s aerospace and energy fields. Due to the low temperature of liquid hydrogen (20 K) special requirements have been put forward for the selection of materials for storage and transportation containers including the adaptability of materials in a liquid hydrogen environment hydrogen embrittlement characteristics mechanical properties and thermophysical properties of liquid hydrogen temperature which can all affect the safe and reliable design of storage and transportation containers. Therefore it is of great practical significance to systematically master the types and properties of cryogenic materials for the development of liquid hydrogen storage and transportation containers. With the wide application of liquid hydrogen in different occasions the requirements for storage and transportation container materials are not the same. In this paper the types and applications of cryogenic materials commonly used in liquid hydrogen storage and transportation containers are reviewed. The effects of low-temperature on the mechanical properties of different materials are introduced. The research progress of cryogenic materials and low-temperature performance data of materials is introduced. The shortcomings in the research and application of cryogenic materials for liquid hydrogen storage and transportation containers are summarized to provide guidance for the future development of container materials. Among them stainless steel is the most widely used cryogenic material for liquid hydrogen storage and transportation vessel but different grades of stainless steel also have different applications which usually need to be comprehensively considered in combination with its low temperature performance corrosion resistance welding performance and other aspects. However with the increasing demand for space liquid hydrogen storage and transportation the research on high specific strength cryogenic materials such as aluminum alloy titanium alloy or composite materials is also developing. Aluminum alloy liquid hydrogen storage and transportation containers are widely used in the space field while composite materials have significant advantages in being lightweight. Hydrogen permeation is the key bottleneck of composite storage and transportation containers. At present there are still many technical problems that have not been solved.
Thermodynamic Analysis of the Gasification of Municipal Solid Waste
May 2017
Publication
This work aims to understand the gasification performance of municipal solid waste (MSW) by means of thermodynamic analysis. Thermodynamic analysis is based on the assumption that the gasification reactions take place at the thermodynamic equilibrium condition without regard to the reactor and process characteristics. First model components of MSW including food green wastes paper textiles rubber chlorine-free plastic and polyvinyl chloride were chosen as the feedstock of a steam gasification process with the steam temperature ranging from 973 K to 2273 K and the steam-to-MSW ratio (STMR) ranging from 1 to 5. It was found that the effect of the STMR on the gasification performance was almost the same as that of the steam temperature. All the differences among the seven types of MSW were caused by the variation of their compositions. Next the gasification of actual MSW was analyzed using this thermodynamic equilibrium model. It was possible to count the inorganic components of actual MSW as silicon dioxide or aluminum oxide for the purpose of simplification due to the fact that the inorganic components mainly affected the reactor temperature. A detailed comparison was made of the composition of the gaseous products obtained using steam hydrogen and air gasifying agents to provide basic knowledge regarding the appropriate choice of gasifying agent in MSW treatment upon demand.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages
Nov 2021
Publication
Clean fuel is advocated to be used for sustainability. The number of liquefied petroleum gas (LPG) and hydrogen vehicles is increasing globally. Explosion hazard is a threat. On the other hand the use of hydrogen is under consideration in Hong Kong. Explosion hazards of these clean fuel (LPG and hydrogen) vehicles were studied and are compared in this paper. The computational fluid dynamics (CFD) software Flame Acceleration Simulator (FLACS) was used. A car garage with a rolling shutter as its entrance was selected for study. Dispersion of LPG from the leakage source with ignition at a higher position was studied. The same garage was used with a typical hydrogen vehicle leaking 3.4 pounds (1.5 kg) of hydrogen in 100 s the mass flow rate being equal to 0.015 kgs−1 . The hydrogen vehicle used in the simulation has two hydrogen tanks with a combined capacity of 5 kg. The entire tank would be completely vented out in about 333 s. Two scenarios of CFD simulation were carried out. In the first scenario the rolling shutter was completely closed and the leaked LPG or hydrogen was ignited at 300 s after leakage. The second scenario was conducted with a gap height of 0.3 m under the rolling shutter. Predicted results of explosion pressure and temperature show that appropriate active fire engineering systems are required when servicing these clean fuel vehicles in garages. An appropriate vent in an enclosed space such as the garage is important in reducing explosion hazards.
Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water
Mar 2019
Publication
Supercritical water gasification is a promising technology for wet biomass utilization. In this paper Ni and other metal catalysts were synthesized by wet impregnation. The stability and catalytic activities of Ni catalysts were evaluated. Firstly catalytic activities of Ni Fe Cu catalysts supported on MgO were tested using wheat straw as raw material in a batch reactor at 723 K and water density of 0.07 cm3/g. Experimental results showed that the order of metal catalyst activity for hydrogen generation was Ni/MgO > Fe/MgO > Cu/MgO. Secondly the influence of different supports on Ni catalysts performance was investigated. The results showed that the order of the Ni catalysts’ activity with different supports was Ni/MgO > Ni/ZnO > Ni/Al2O3 > Ni/ZrO2. Finally the effects of Ni loading and the amount of Ni catalyst addition on hydrogen production and the stability of Ni/MgO catalyst were studied. It was found that serious deactivation of Ni catalyst in the process of supercritical water gasification took place. Even if carbon deposited on the catalyst surface was removed by high temperature calcination and the catalyst was reduced with hydrogen the activity of used catalyst was only partially restored.
Current Status and Development Trend of Wind Power Generation-based Hydrogen Production Technology
Jan 2019
Publication
The hydrogen production technology by wind power is an effective mean to improve the utilization of wind energy and alleviate the problem of wind power curtailment. First the basic principles and technical characteristics of the hydrogen production technology by wind power are briefly introduced. Then the history of the hydrogen production technology is reviewed and on this basis the hydrogen production system by wind power is elaborated in detail. In addition the prospect of the application of the hydrogen production technology by wind power is analyzed and discussed. In the end the key technology of the hydrogen production by wind power and the problems to be solved are comprehensively reviewed. The development of hydrogen production technology by wind power is analyzed from many aspects which provides reference for future development of hydrogen production technology by wind power
Safety Design and Engineering Solution of Fuel Cell Powered Ship in Inland Waterway of China
Oct 2021
Publication
From the perspective of risk control when hydrogen fuel and fuel cells are used on ships there is a possibility of low-flash fuel leakage leading to the risk of explosion. Since the fuel cell space (cabin for fuel cell installations) is an enclosed space any small amount of leakage must be handled properly. In ship design area classification is a method of analyzing and classifying the areas where explosive gas atmospheres may occur. If the fuel cell space is regarded as a hazardous area all the electrical devices inside it must be explosion-proof type which will make the ship’s design very difficult. This paper takes a Chinese fuel cell powered ship as an example to analyze its safety. Firstly the leakage rates of fuel cell modules valves and connectors are calculated. Secondly the IEC60079-10-1 algorithm is used to calculate the risk level of the fuel cell space. Finally the ship and fuel cells are optimized and redesigned and the risk level of the fuel cell space is recalculated and compared. The result shows that the optimized fuel space risk level could be reduced to the level of the non-hazardous zone.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Two-dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride
May 2021
Publication
Magnesium hydride (MgH2) is a potential material for solid-state hydrogen storage. However the thermodynamic and kinetic properties are far from practical application in the current stage. In this work two-dimensional vanadium carbide (V2C) MXene with layer thickness of 50−100 nm was fist synthesized by selectively HF-etching the Al layers from V2AlC MAX phase and then introduced into MgH2 to improve the hydrogen sorption performances of MgH2. The onset hydrogen desorption temperature of MgH2 with V2C addition is significantly reduced from 318 °C for pure MgH2 to 190 °C with a 128 °C reduction of the onset temperature. The MgH2+ 10 wt% V2C composite can release 6.4 wt% of H2 within 10 min at 300 °C and does not loss any capacity for up to 10 cycles. The activation energy for the hydrogen desorption reaction of MgH2 with V2C addition was calculated to be 112 kJ mol−1 H2 by Arrhenius's equation and 87.6 kJ mol−1 H2 by Kissinger's equation. The hydrogen desorption reaction enthalpy of MgH2 + 10 wt% V2C was estimated by van't Hoff equation to be 73.6 kJ mol−1 H2 which is slightly lower than that of the pure MgH2 (77.9 kJ mol−1 H2). Microstructure studies by XPS TEM and SEM showed that V2C acts as an efficient catalyst for the hydrogen desorption reaction of MgH2. The first-principles density functional theory (DFT) calculations demonstrated that the bond length of Mg−H can be reduced from 1.71 Å for pure MgH2 to 2.14 Å for MgH2 with V2C addition which contributes to the destabilization of MgH2. This work provides a method to significantly and simultaneously tailor the hydrogen sorption thermodynamics and kinetics of MgH2 by two-dimensional MXene materials.
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.
Roadmap to Hybrid Offshore System with Hydrogen and Power Co-generation
Sep 2021
Publication
Constrained by the expansion of the power grid the development of offshore wind farms may be hindered and begin to experience severe curtailment or restriction. The combination of hydrogen production through electrolysis and hydrogen-to-power is considered to be a potential option to achieve the goal of low-carbon and energy security. This work investigates the competitiveness of different system configurations to export hydrogen and/or electricity from offshore plants with particular emphasis on unloading the mixture of hydrogen and electricity to end-users on land. Including the levelized energy cost and net present value a comprehensive techno-economic assessment method is proposed to analyze the offshore system for five scenarios. Assuming that the baseline distance is 10 km the results show that exporting hydrogen to land through pipelines shows the best economic performance with the levelized energy cost of 3.40 $/kg. For every 10 km increase in offshore distance the net present value of the project will be reduced by 5.69 MU$ and the project benefit will be positive only when the offshore distance is less than 53.5 km. An important finding is that the hybrid system under ship transportation mode is not greatly affected by the offshore distance. Every 10% increase in the proportion of hydrogen in the range of 70%–100% can increase the net present value by 1.43–1.70 MU$ which will increase by 7.36–7.37 MU$ under pipeline transportation mode. Finally a sensitivity analysis was carried out to analyze the wind speed electricity and hydrogen prices on the economic performance of these systems.
An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System
Sep 2021
Publication
The hydrogen fuel cell (HFC) vehicle is an important clean energy vehicle which has prospects for development. The behavior of the hydrogen fuel cell (HFC) vehicle power system and in particular the proton-exchange membrane fuel cell has been extensively studied as of recent. The development of the dynamic system modeling technology is of paramount importance for HFC vehicle studies; however it is hampered by the separation of the electrochemical properties and dynamic properties. In addition the established model matching the follow-up control method lacks applicability. In attempts to counter these obstructions we proposed an improved fuzzy (Proportional Integral Derivative) PID control method considering HFC voltage-output characteristics. By developing both the electrochemical and dynamic model for HFC vehicle we can realize the coordinated control of HFC and power cell. The simulation results are in good agreement with the experimental results in the two models. The proposed control algorithm has a good control effect in all stages of HFC vehicle operation.
Computational Intelligence Approach for Modeling Hydrogen Production: A Review
Mar 2018
Publication
Hydrogen is a clean energy source with a relatively low pollution footprint. However hydrogen does not exist in nature as a separate element but only in compound forms. Hydrogen is produced through a process that dissociates it from its compounds. Several methods are used for hydrogen production which first of all differ in the energy used in this process. Investigating the viability and exact applicability of a method in a specific context requires accurate knowledge of the parameters involved in the method and the interaction between these parameters. This can be done using top-down models relying on complex mathematically driven equations. However with the raise of computational intelligence (CI) and machine learning techniques researchers in hydrology have increasingly been using these methods for this complex task and report promising results. The contribution of this study is to investigate the state of the art CI methods employed in hydrogen production and to identify the CI method(s) that perform better in the prediction assessment and optimization tasks related to different types of Hydrogen production methods. The resulting analysis provides in-depth insight into the different hydrogen production methods modeling technique and the obtained results from various scenarios integrating them within the framework of a common discussion and evaluation paper. The identified methods were benchmarked by a qualitative analysis of the accuracy of CI in modeling hydrogen production providing extensive overview of its usage to empower renewable energy utilization.
Numerical Simulation of Hydrogen Leakage and Diffusion Process of Fuel Cell Vehicle
Oct 2021
Publication
Regarding the problem of hydrogen diffusion of the fuel cell vehicle (HFCV) when its hydrogen supply system leaks this research uses the FLUENT software to simulate numerical values in the process of hydrogen leakage diffusion in both open space and closed space. This paper analyzed the distribution range and concentration distribution characteristics of hydrogen in these two different spaces. Besides this paper also took a survey about the effects of leakage rate wind speed wind direction in open space and the role the air vents play on hydrogen safety in closed space which provides a reference for the hydrogen safety of HFCV. In conclusion the experiment result showed that: In open space hydrogen leakage rate has a great influence on its diffusion. When the leakage rate doubles the hydrogen leakage range will expand about 1.5 times simultaneously. The hydrogen diffusion range is the smallest when the wind blows at 90 degrees which is more conducive to hydrogen diffusion. However when the wind direction is against the direction of the leakage of hydrogen the range of hydrogen distribution is maximal. Under this condition the risk of hydrogen leakage is highest. In an enclosed space when the vent is set closest to the leakage position the volume fraction of hydrogen at each time is smaller than that at other positions so it is more beneficial to safety.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
On-Board Liquid Hydrogen Cold Energy Utilization System for a Heavy-Duty Fuel Cell Hybrid Truck
Aug 2021
Publication
In this paper a kind of on-board liquid hydrogen (LH2 ) cold energy utilization system for a heavy-duty fuel cell hybrid truck is proposed. Through this system the cold energy of LH2 is used for cooling the inlet air of a compressor and the coolant of the accessories cooling system sequentially to reduce the parasitic power including the air compressor water pump and radiator fan power. To estimate the cold energy utilization ratio and parasitic power saving capabilities of this system a model based on AMESim software was established and simulated under different ambient temperatures and fuel cell stack loads. The simulation results show that cold energy utilization ratio can keep at a high level except under extremely low ambient temperature and light load. Compared to the original LH2 system without cold energy utilization the total parasitic power consumption can be saved by up to 15% (namely 1.8 kW).
Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming
Nov 2020
Publication
To efficiently convert and utilize intermittent solar energy a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 ◦C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 ◦C and 0.01 bar while the highest first-law efficiency solar-to-fuel efficiency and exergy efficiency are 82.3% 45.3% and 70.4% at 215 ◦C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2 ·h −1 and 247 g·m−2 ·h −1 at 200 ◦C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2 ·h −1 . This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.
Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)
Nov 2021
Publication
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 wt% and 145–147 kg cm3 ). However the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 C–580 C) sluggish kinetics and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done mainly including: additives or catalysts doping nanoconfining Mg(BH4)2 in nanoporous hosts forming reactive hydrides systems multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride including: synthesis methods crystal structures decomposition behaviors as well as emphasized performance improvements for hydrogen storage.
Cotton Stalk Activated Carbon-supported Co–Ce–B Nanoparticles as Efficient Catalysts for Hydrogen Generation Through Hydrolysis of Sodium Borohydride
Nov 2019
Publication
Porous cotton stalk activated carbons (CSAC) were prepared by phosphoric acid activation of cotton stalks in a fluidized bed. The CSAC-supported Co–B and Co–Ce–B catalysts were prepared by the impregnation-chemical reduction method. The samples were characterized by the nitrogen adsorption XRD FTIR and TEM measurements. The effects of the sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations reaction temperature and recyclability on the rate of NaBH4 hydrolysis over the CSAC-supported Co–Ce–B catalysts were systematically investigated. The results showed that the agglomeration of the Co–Ce–B nanoclusters on the CSAC support surface was significantly reduced with the introduction of cerium. The CSAC-supported Co–Ce–B catalyst exhibited superior catalytic activity and the average hydrogen generation rate was 16.42 L min−1 g−1 Co at 25°C which is higher than the most reported cobalt-based catalysts. The catalytic hydrolysis of NaBH4 was zero order with respect to the NaBH4 concentration and the hydrogen generation rate decreased with the increase in the NaOH concentration. The activation energy of the hydrogen generation reaction on the prepared catalyst was estimated to be 48.22 kJ mol−1. A kinetic rate equation was also proposed.
Alternative-energy-vehicles Deployment Delivers Climate, Air Quality, and Health Co-benefits when Coupled with Decarbonizing Power Generation in China
Aug 2021
Publication
China is the world’s largest carbon emitter and suffers from severe air pollution which results in approximately one million premature deaths/year. Alternative energy vehicles (AEVs) (electric hydrogen fuel cell and natural gas vehicles) can reduce carbon emissions and improve air quality. However climate air quality and health benefits of AEVs powered with deeply decarbonized power generation are poorly quantified. Here we quantitatively estimate the air quality health carbon emission and economic benefits of replacing internal combustion engine vehicles with various AEVs. We find co-benefits increase dramatically as the electricity grid decarbonizes and hydrogen is produced from non-fossil fuels. Relative to 2015 a conversion to AEVs using largely non-fossil power can reduce air pollution and associated premature mortalities and years of life lost by 329000 persons/year and 1611000 life years/year. Thus maximizing climate air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
An Optimal Fuzzy Logic-Based Energy Management Strategy for a Fuel Cell/Battery Hybrid Power Unmanned Aerial Vehicle
Feb 2022
Publication
With the development of high-altitude and long-endurance unmanned aerial vehicles (UAVs) optimization of the coordinated energy dispatch of UAVs’ energy management systems has become a key target in the research of electric UAVs. Several different energy management strategies are proposed herein for improving the overall efficiency and fuel economy of fuel cell/battery hybrid electric power systems (HEPS) of UAVs. A rule-based (RB) energy management strategy is designed as a baseline for comparison with other strategies. An energy management strategy (EMS) based on fuzzy logic (FL) for HEPS is presented. Compared with classical rule-based strategies the fuzzy logic control has better robustness to power fluctuations in the UAV. However the proposed FL strategy has an inherent defect: the optimization performances will be determined by the heuristic method and the past experiences of designers to a great extent rather than a specific cost function of the algorithm itself. Thus the paper puts forward an improved fuzzy logic-based strategy that uses particle swarm optimization (PSO) to track the optimal thresholds of membership functions and the equivalent hydrogen consumption minimization is considered as the objective function. Using a typical 30 min UAV mission profile all the proposed EMS were verified by simulations and rapid controller prototype (RCP) experiments. Comprehensive comparisons and analysis are presented by evaluating hydrogen consumption system efficiency and voltage bus stability. The results show that the PSO-FL algorithm can further improve fuel economy and achieve superior overall dynamic performance when controlling a UAV’s fuel-cell powertrain.
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer electrochemical reactions fluid flow energy transport and species transport. The Butler‐Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation‐ and diffusion‐controlled Butler‐Volmer equation. Three different electrode reaction models are examined in the study which is named case 1 case 2 and case 3 respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion‐controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte which demonstrates the non‐linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.
Recent Progress in Hydrogen Storage
Nov 2008
Publication
The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although in the long-term the ultimate technological challenge is large-scale hydrogen production from renewable sources the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles.
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are remarkably higher than those in Al-free austenite indicating that the presence of Al is more favorable for reducing hydrogen mobility. In Al-free austenite interstitial hydrogen atoms caused a remarkable increase in lattice compressive stress and a distinct decrease in bulk shear and Young’s moduli. Whereas in Al-containing austenite the lattice compressive stress and the mechanical deterioration induced by interstitial hydrogen atoms were effectively suppressed.
Interfacial Confinement of Ni-V2O3 in Molten Salts for Enhanced Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3.electrodes consisting of nanostrip-like V2O3.perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3.accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H* for generating H2.
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Oxygen Mixture in a Channel with Triangular Obstacles
Sep 2021
Publication
Study of flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels is an important subject of research for hydrogen safety. Experiments and numerical simulations of DDT in channels equipped with triangular obstacles were conducted in this work. High-speed schlieren photography and pressure records were used to study the flame shape changes flame propagation and pressure build up in the experiments. In the simulations the fully compressible reactive Navier–Stokes equations coupled with a calibrated chemical-diffusion model for stoichiometric hydrogen-oxygen mixture were solved using a high-order numerical method. The simulations were in good agreement with the experiments. The results show that the triangular obstacles significantly promote the flame acceleration and provide conditions for the occurrence of DDT. In the early stages of flame acceleration vortices are generated in the gaps between adjacent obstacles which is the main cause for the flame roll-up and distortion. A positive feedback mechanism between the combustiongenerated flow and flame propagation results in the variations of the size and velocity of vortices. The flame-vortex interactions cause flame fragmentation and consequently rapid growth in flame surface area which further lead to flame acceleration. The initially laminar flame then develops into a turbulent flame with the creation of shocks shock-flame interactions and various flame instabilities. The continuously arranged obstacles interact with shocks and flames and help to create environments in which a detonation can develop. Both flame collision and flame-shock interaction can give rise to detonation in the channels with triangular obstacles.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Investigation of the Influence of Pre-Charged Hydrogen on Fracture Toughness of As-Received 2.25Cr1Mo0.25V Steel and Weld
Jun 2018
Publication
Fracture failure caused by hydrogen embrittlement (HE) is a major concern for the system reliability and safety of hydrogen storage vessels which are generally made of 2.25Cr1Mo0.25V steel. Thus study of the influence of pre-charged hydrogen on fracture toughness of as-received 2.25Cr1Mo0.25V steel and weld is of significant importance. In the current work the influence of hydrogen on fracture toughness of as-received 2.25Cr1Mo0.25V steel and weld was systematically studied. Base metal (BM) and weld metal (WM) specimens under both hydrogen-free and hydrogen-charged conditions were tested using three-point bending tests. Hydrogen was pre-charged inside specimens by the immersion charging method. The J-integral values were calculated for quantitatively evaluating the fracture toughness. In order to investigate the HE mechanisms optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the microstructure of BM and WM specimens. The results revealed that the presence of pre-charged hydrogen caused a significant decrease of the fracture toughness for both BM and WM specimens. Moreover the pre-charged hydrogen led to a remarkable transition of fracture mode from ductile to brittle pattern in 2.25Cr1Mo0.25V steel.
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Especially the Mg-NiTiO3/TiO2 composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8 ± 1.2 (nanocrystalline Mg) kJ/mol to 34.2 ± 0.2 kJ/mol. In addition the hydrogenated sample began to release hydrogen at about 193.2 °C and eventually desorbed 6.6 wt% H2. The desorption enthalpy of the hydrogenated Mg-NiTiO3 -C was estimated to be 78.6 ± 0.8 kJ/mol 5.3 kJ/mol lower compared to 83.9 ± 0.7 kJ/mol of nanocrystalline Mg. Besides the sample revealed splendid cyclic stability during 20 cycles. No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt% hydrogen capacity degradation was observed. Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3 -C composite which might serve as a reference for future design of highly effective hydrogen storage materials.
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
Synthetic Natural Gas Production from CO2 and Renewable H2: Towards Large-scale Production of Ni–Fe Alloy Catalysts for Commercialization
Apr 2020
Publication
Synthetic natural gas (SNG) is one of the promising energy carriers for the excessive electricity generated from variable renewable energy sources. SNG production from renewable H2 and CO2 via catalytic CO2 methanation has gained much attention since CO2 emissions could be simultaneously reduced. In this study Ni–Fe/(MgAl)Ox alloy catalysts for CO2 methanation were prepared via hydrotalcite precursors using a rapid coprecipitation method. The effect of total metal concentration on the physicochemical properties and catalytic behavior was investigated. Upon calcination the catalysts showed high specific surface area of above 230 m2 g−1. Small particle sizes of about 5 nm were obtained for all catalysts even though the produced catalyst amount was increased by 10 times. The catalysts exhibited excellent space-time yield under very high gas space velocity (34000 h−1) irrespective of the metal concentration. The CO2 conversions reached 73–79% at 300 °C and CH4 selectivities were at 93–95%. Therefore we demonstrated the potential of large-scale production of earth-abundant Ni–Fe based catalysts for CO2 methanation and the Power-to-Gas technology.
Improved Hydrogen Separation Performance of Asymmetric Oxygen Transport Membranes by Grooving in the Porous Support Layer
Nov 2020
Publication
Hydrogen separation through oxygen transport membranes (OTMs) has attracted much attention. Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances. However the resistance in the porous support layer (PSL) limits the overall separation performance significantly. Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the separation performance. There is no relevant research on studying the influence of the PSL on hydrogen separation performance so far. Herein we prepared Ce0.85Sm0.15O1.925 – Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) asymmetric membranes with straight grooves in PSL by tape-casting and laser grooving. A ~30% improvement in the hydrogen separation rate was achieved by grooving in the PSLs. It indicates that the grooves may reduce the concentration polarization resistance in PSL for the hydrogen separation process. This work provides a straight evidence on optimizing the structures of PSL for improving the hydrogen separation performance of the membrane reactors.
Enhanced Hydrogen Storage of Alanates: Recent Progress and Future Perspectives
Feb 2021
Publication
The global energy crisis and environmental pollution have caused great concern. Hydrogen is a renewable and environmentally friendly source of energy and has potential to be a major alternative energy carrier in the future. Due to its high capacity and relatively low cost of raw materials alanate has been considered as one of the most promising candidates for hydrogen storage. Among them LiAlH4 and NaAlH4 as two representative metal alanates have attracted extensive attention. Unfortunately the high desorption temperature and sluggish kinetics restrict its practical application. In this paper the basic physical and chemical properties as well as the hydrogenation/dehydrogenation reaction mechanism of LiAlH4 and NaAlH4 are briefly reviewed. The recent progress on strategic optimizations toward tuning the thermodynamics and kinetics of the alanate including nanoscaling doping catalysts and compositing modification are emphatically discussed. Finally the coming challenges and the development prospects are also proposed in this review.
Irreversible Hydrogen Embrittlement Study of B1500HS High Strength Boron Steel
Dec 2020
Publication
The reversible/irreversible recovery of mechanical properties and the microstructure characteristics of a typical hot-stamped steel B1500HS have been studied under different conditions of hydrogen permeation. Initially all tested specimens were permeated by hydrogen atoms through an electrochemical hydrogen charging scheme. Then the comparisons between different currents and charging time were performed. The influence of different storage time was compared as well. Additionally the effect of the plastic strain introduced by pre-stretching was also investigated. The experimental results showed that the negative impact of hydrogen embrittlement was altered from reversible to irreversible as the magnitude of the charging current increased. The hydrogen blistering and the hydrogen charging-induced cracks were both observed and inspected in the tested samples regarding the irreversible situation. Moreover the adverse influence of hydrogen embrittlement was enhanced by plastic pre-straining or extending the charging period. At the micro-level hydrogen charging-induced cracks generally were generated at defect locations such as the prior austenite grain boundaries and lath martensite interfaces. Particularly crack direction occurred perpendicular to the orientation of lath martensite and transgranular fracture occurred at the prior austenite grains.
Hollow Cobalt Sulfide Nanocapsules for Electrocatalytic Selective Transfer Hydrogenation of Cinnamaldehyde with Water
Feb 2021
Publication
Designing nanostructured electrocatalysts for selective transfer hydrogenation of α β-unsaturated aldehydes with water as the hydrogen source is highly desirable. Here a facile self-templating strategy is designed for the synthesis of CoS2 and CoS2-x nanocapsules (NCs) as efficient cathodes for selective transfer hydrogenation of cinnamaldehyde a model α β-unsaturated aldehyde. The hollow porous structures of NCs are rich in active sites and improve mass transfer resulting in high turnover frequency. The specific adsorption of the styryl block on pristine CoS2 NCs is conducive to the selective formation of half-hydrogenated hydrocinnamaldehyde with 91.7% selectivity and the preferential adsorption of the C = O group induced by sulfur vacancies on defective CoS2-x NCs leads to the full-hydrogenated hydrocinnamyl alcohol with 92.1% selectivity. A cross-coupling of carbon and hydrogen radicals may be involved in this electrochemical hydrogenation reaction. Furthermore this selective hydrogenation method is also effective for other α β-unsaturated aldehydes illustrating the universality of the method.
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
Molecular Dynamics Studies of Hydrogen Effect on Intergranular Fracture in α-Iron
Nov 2020
Publication
In the current study the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure and a theoretical model is then developed to predict the intergranular cracking rate
Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel
Feb 2019
Publication
The effects of temperature on bulk hydrogen concentration and diffusion have been tested with the Devanathan–-Stachurski method. Thus a model based on hydrogen potential diffusivity loading frequency and hydrostatic stress distribution around crack tips was applied in order to quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale embrittlement mechanism which is generated by hydrogen atom delivery to the crack tip under fatigue loading and rationalized the ΔK dependence of traditional models. Hence this work could be applied to optimize operations that will prolong the life of the pipeline.
No more items...