China, People’s Republic
Resource Assessment for Green Hydrogen Production in Kazakhstan
Jan 2023
Publication
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions new emerging energy technologies such as hydrogen production require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water renewable electricity and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels respectively. In our base case scenario 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity considering Kazakhstan's wind and solar capacity factors. This could convert into 28652 tons of nickel 15832 tons of titanium and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.
Recent Advances in Hybrid Water Electrolysis for Energy-saving Hydrogen Production
Nov 2022
Publication
Electricity-driven water splitting to convert water into hydrogen (H2) has been widely regarded as an efficient approach for H2 production. Nevertheless the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction (OER). To effectively address the issue a novel concept of hybrid water electrolysis has been developed for energy– saving H2 production. This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER. Herein recent advances in such water splitting system for boosting H2 evolution under low cell voltage are systematically summarized. Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction (HER) are discussed in detail. To facilitate the development of hybrid water electrolysis the major challenges and perspectives are also proposed.
Economic Operation Strategy of Integrated Hydrogen Energy System Considering the Uncertainty of PV Power Output
Jan 2023
Publication
To address the negative influence caused by power randomness of distributed PV output on energy system’s economic operation in this work an economic operation strategy considering the uncertainty features of PV output has been designed and applied on an integrated hydrogen energy system. First the thermal system operation model and the thermoelectric output control model are precisely built for the integrated hydrogen energy system and the hydrogen-based fuel cell respectively. Then referring to the PV output prediction data the uncertainty of light intensity variation is analyzed to correct the PV output prediction curve. Finally a cost–benefit model for the optimal economic operation of the integrated hydrogen energy system including PV hydrogen fuel cell and cogeneration unit is designed with an objective function of achieving an optimal economic operation of the multi-energy coupling devices. The simulation tests validate that considering the influence of PV output uncertainty on hydrogen fuel cell output can make the system operation more reasonable which ensures the economic and reliable operation of hydrogen energy systems.
Transient Modeling and Performance Analysis of Hydrogen-Fueled Aero Engines
Jan 2023
Publication
With the combustor burning hydrogen as well as the strongly coupled fuel and cooling system the configuration of a hydrogen-fueled aero engine is more complex than that of a conventional aero engine. The performance and especially the dynamic behavior of a hydrogen-fueled aero engine need to be fully understood for engine system design and optimization. In this paper both the transient modeling and performance analysis of hydrogen-fueled engines are presented. Firstly the models specific to the hydrogen-fueled engine components and systems including the hydrogen-fueled combustor the steam injection system a simplified model for a quick NOx emission assessment and the heat exchangers are developed and then integrated to a conventional engine models. The simulations with both Simulink and Speedgoat-based hardware in the loop system are carried out. Secondly the performance analysis is performed for a typical turbofan engine configuration CF6 and for the two hydrogen-fueled engine configurations ENABLEH2 and HySIITE which are currently under research and development by the European Union and Pratt & Whitney respectively. At last the simulation results demonstrate that the developed transient models can effectively reflect the characteristics of hydrogen burning heat exchanging and NOx emission for hydrogen-fueled engines. In most cases the hydrogen-fueled engines show lower specific fuel consumption lower turbine entry temperature and less NOx emissions compared with conventional engines. For example at max thrust state the advanced hydrogen-fueled engine can reduce the parameters mentioned above by about 68.5% 3.7% and 12.7% respectively (a mean value of two configurations).
Interchangeability of Hydrogen Injection in Zhejiang Natural Gas Pipelines as a Means to Achieve Carbon Neutrality
Sep 2022
Publication
The blending of hydrogen gas into natural gas pipelines is an effective way of achieving the goal of carbon neutrality. Due to the large differences in the calorific values of natural gas from different sources the calorific value of natural gas after mixing with hydrogen may not meet the quality requirements of natural gas and the quality of natural gas entering long-distance natural gas and urban gas pipelines also has different requirements. Therefore it is necessary to study the effect of multiple gas sources and different pipe network types on the differences in the calorific values of natural gas following hydrogen admixing. In this regard this study aimed to determine the quality requirements and proportions of hydrogen-mixed gas in natural gas pipelines at home and abroad and systematically determined the quality requirements for natural gas entering both long-distance natural gas and urban gas pipelines in combination with national standards. Taking the real calorific values of the gas supply cycle of seven atmospheric sources as an example the calorific and Wobbe Index values for different hydrogen admixture ratios in a one-year cycle were calculated. The results showed that under the requirement of natural gas interchangeability there were great differences in the proportions of natural gas mixed with hydrogen from different gas sources. When determining the proportion of hydrogen mixed with natural gas both the factors of different gas sources and the factors of the gas supply cycle should be considered.
Progress in Electrical Energy Storage System: A Critical Review
Jan 2009
Publication
Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage compressed air energy storage battery flow battery fuel cell solar fuel superconducting magnetic energy storage flywheel capacitor/supercapacitor and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics applications and deployment status.
Hollow CdS-Based Photocatalysts
Oct 2020
Publication
In recent years photocatalytic technology driven by solar energy has been extensively investigated to ease energy crisis and environmental pollution. Nevertheless efficiency and stability of photocatalysts are still unsatisfactory. To address these issues design of advanced photocatalysts is important. Cadmium sulphide (CdS) nanomaterials are one of the promising photocatalysts. Among them hollow-structured CdS featured with enhanced light absorption ability large surface area abundant active sites for redox reactions and reduced diffusion distance of photogenerated carriers reveals a broad application prospect. Herein main synthetic strategies and formation mechanism of hollow CdS photocatalysts are summarized. Besides we comprehensively discuss the current development of hollow-structured CdS nanomaterials in photocatalytic applications including H2 production CO2 reduction and pollutant degradation. Finally brief conclusions and perspectives on the challenges and future directions for hollow CdS photocatalysts are proposed.
Operation Potential Evaluation of Multiple Hydrogen Production and Refueling Integrated Stations Under DC Interconnected Environment
Feb 2022
Publication
Hydrogen production and refueling integrated station can play an important role in the development of hydrogen transportation and fuel cell vehicles and actively promote the energy transformation. By using DC system for hydrogen production and refueling the conversion links can be reduced and the system efficiency can be effectively improved. In this paper a new scheme of DC interconnection for hydrogen production and refueling integrated station is proposed and the modular modeling and operation capability evaluation method are proposed including the characteristic analysis of integrated station the modular modeling and evaluation method for multiple integrated stations under DC interconnection. The DC interconnection system of five integrated stations is constructed and operation capability improvement of integrated stations after adopting the innovative DC interconnection scheme is analyzed. On this basis the system simulation model based on MATLAB/Simulink and physical test platform are built to verify the effectiveness of the theoretical analysis.
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Effect of Hydrogen on Very High Cycle Fatigue Behavior of a Low-strength Cr-Ni-Mo-V Steel Containing Micro-defects
Dec 2017
Publication
The role of hydrogen in fatigue failure of low strength steels is not as well understood as of high strength steels in very high cycle fatigue regime. In this work axially cyclic tests on a low strength Cr-Ni-Mo-V steel with charged hydrogen were carried out up to the very high cycle fatigue regime under ultrasonic frequency to examine the degradation of fatigue strength and associated failure mechanisms. Results show that the S-N curves show a continuously decreasing mode and hydrogen-charged specimens have lower fatigue strength and shorter fatigue lifetime as compared with as-received specimens. It is concluded that the hydrogen trapped by inclusions drives interior micro-defects as dominant crack initiation site and has a clear link to the initiation and early growth of interior fatigue cracks.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Molybdenum Carbide Microcrystals: Efficient and Stable Catalyst for Photocatalytic H2 Evolution From Water in The Presence Of Dye Sensitizer
Sep 2016
Publication
Rod-like molybdenum carbide (Mo2C) microcrystals were obtained from the pyrolysis of Mo-containing organic-inorganic hybrid composite. We investigated the photocatalytic H2 evolution activity of Mo2C by constructing a Mo2C-dye sensitizer photocatalyst system. A high quantum efficiency of 29.7% was obtained at 480 nm. Moreover Mo2C catalyst can be easily recycled by simple filtration.
Development of Analysis Program for Direct Containment Heating
Feb 2022
Publication
Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal metal oxidation reaction debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure temperature and hydrogen production in containment well and for most comparisons the relative errors can be maintained within 20%. Among them the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
Jan 2022
Publication
Water splitting has been regarded as a sustainable and environmentally-friendly technique to realize green hydrogen generation while more energy is consumed due to the high overpotentials required for the anode oxygen evolution reaction. Urea electrooxidation an ideal substitute is thus received increasing attention in assisting water-splitting reactions. Note that highly efficient catalysts are still required to drive urea oxidation and the facile generation of high valence state species is significant in the reaction based on the electrochemical-chemical mechanisms. The high cost and rareness make the noble metal catalysts impossible for further consideration in large-scale application. Ni-based catalysts are very promising due to their cheap price facile structure tuning good compatibility and easy active phase formation. In the light of the significant advances made recently herein we reviewed the recent advances of Ni-based powder catalysts for urea oxidation in assisting water-splitting reaction. The fundamental of urea oxidation is firstly presented to clarify the mechanism of urea-assisted water splitting and then the prevailing evaluation indicators are briefly expressed based on the electrochemical measurements. The catalyst design principle including synergistic effect electronic effect defect construction and surface reconstruction as well as the main fabrication approaches are presented and the advances of various Ni-based powder catalysts for urea assisted water splitting are summarized and discussed. The problems and challenges are also concluded for the Ni-based powder catalysts fabrication the performance evaluation and their application. Considering the key influence factors for catalytic process and their application attention should be given to structure-property relationship deciphering novel Ni-based powder catalysts development and their construction in the real device; specifically the effort should be directed to the Ni-based powder catalyst with multi-functions to simultaneously promote the fundamental steps and high anti-corrosion ability by revealing the local structure reconstruction as well as the integration in the practical application. We believe the current summarization will be instructive and helpful for the Ni-based powder catalysts development and understanding their catalytic action for urea-assisted hydrogen generation via water splitting technique.
Integrating a Top-Gas Recycling and CO2 Electrolysis Process for H2-Rich Gas Injection and Reduce CO2 Emissions from an Ironmaking Blast Furnace
Mar 2022
Publication
Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2–CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9–10.9 m3/tHM of H2 saved 1 kg/tHM coke rate depending on injection position. Compared with the traditional blast furnace injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.
Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation
Sep 2021
Publication
A Lagrangian-based one-dimensional approach has been developed using Cantera to study the dynamics of spherically expanding flames. The detailed reaction model USC-Mech II has been employed to examine flame propagating in hydrogen-air mixtures. In the first part our approach has been validated against laminar flame speed and Markstein number data from the literature. It was shown that the laminar flame speed was predicted within 5% on average but that discrepancies were observed for the Markstein number especially for rich mixtures. In the second part a detailed analysis of the thermo-chemical dynamics along the path of Lagrangian particles propagating in stretched flames was performed. For mixtures with negative Markstein lengths it was found that at high stretch rates the mixture entering the reaction-dominated period is less lean with respect to the initial mixture than at low stretch rate. This induces a faster rate of chemical heat release and of active radical production which results in a higher flame propagation speed. Opposite effects were observed for mixtures with positive Markstein lengths for which slower flame propagation was observed at high stretch rates compared to low stretch rates."
Low Temperature Autoignition of Diesel Fuel Under Dual Operation with Hydrogen and Hydrogen-carriers
Mar 2022
Publication
While electrification of light duty vehicles is becoming a real solution to abate local pollutant as well as greenhouse gases emission heavy duty applications (such as long distance freight and maritime transport) will keep requiring fuel-based propulsion systems. In these sectors dominated by compression ignition engines research on alternative biofuels and new combustion modes is still highly necessary. Dual-fuel combustion appears as a very promising concept to replace conventional diesel fuel by sustainable ones. Among the latter hydrogen-derived fuels (the so-called electrofuels or e-fuels) are maybe the most interesting. This work addresses the effect of partial substitution of diesel fuel by hydrogen and hydrogen-carriers (ammonia and methane) on the autoignition process under low temperature conditions. Tests were carried out in a constant volume combustion chamber at different temperatures (535 600 and 650 ◦C) and pressures (11 16 and 21 bar). While the cool flames timing and intensity was only slightly affected by the low reactivity fuel energy content the main ignition was delayed this effect being much more noticeable for ammonia followed by hydrogen and finally methane. Kinetic simulations showed a clear competition for active radicals between both fuels (diesel and low reactivity fuel). The combustion duration also increased with the hydrogen or hydrogen-carrier content which greatly points to the need of modifications in the injection strategy of compression ignition engines operating under dual mode. A correlation was proposed for estimating the autoignition delay time for dual-fuel lean combustion at low temperature.
Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity
Nov 2021
Publication
The near-wall flame structure and pollutant emissions of the laminar premixed biogashydrogen impinging flame were simulated with a detailed chemical mechanism. The spatial distributions of the temperature critical species and pollutant emissions near the wall of the laminar premixed biogas–hydrogen impinging flame were obtained and investigated quantitatively. The results show that the cold wall can influence the premixed combustion process in the flame front which is close to the wall but does not touch the wall and results in the obviously declined concentrations of OH H and O radicals in the premixed combustion zone. After flame quenching a high CO concentration can be observed near the wall at equivalence ratios (ϕ) of both 0.8 and 1.2. Compared with that at ϕ = 1.0 more unburned fuel is allowed to pass through the quenching zone and generate CO after flame quenching near the wall thanks to the suppressed fuel consumption rate near the wall and the excess fuel in the unburned gases at ϕ = 0.8 and 1.2 respectively. By isolating the formation routes of NO production it is found that the fast-rising trend of NO concentration near the wall in the post flame region at ϕ = 0.8 is attributed to the NO transportation from the NNH route primarily while the prompt NO production accounts for more than 90% of NO generation in the wall vicinity at ϕ = 1.2. It is thus known that thanks to the effectively increased surface-to-volume ratio the premixed combustion process in the downsized chamber will be affected more easily by the amplified cooling effects of the cold wall which will contribute to the declined combustion efficiency increased CO emission and improved prompt NO production.
No more items...