China, People’s Republic
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
An Optimal Fuzzy Logic-Based Energy Management Strategy for a Fuel Cell/Battery Hybrid Power Unmanned Aerial Vehicle
Feb 2022
Publication
With the development of high-altitude and long-endurance unmanned aerial vehicles (UAVs) optimization of the coordinated energy dispatch of UAVs’ energy management systems has become a key target in the research of electric UAVs. Several different energy management strategies are proposed herein for improving the overall efficiency and fuel economy of fuel cell/battery hybrid electric power systems (HEPS) of UAVs. A rule-based (RB) energy management strategy is designed as a baseline for comparison with other strategies. An energy management strategy (EMS) based on fuzzy logic (FL) for HEPS is presented. Compared with classical rule-based strategies the fuzzy logic control has better robustness to power fluctuations in the UAV. However the proposed FL strategy has an inherent defect: the optimization performances will be determined by the heuristic method and the past experiences of designers to a great extent rather than a specific cost function of the algorithm itself. Thus the paper puts forward an improved fuzzy logic-based strategy that uses particle swarm optimization (PSO) to track the optimal thresholds of membership functions and the equivalent hydrogen consumption minimization is considered as the objective function. Using a typical 30 min UAV mission profile all the proposed EMS were verified by simulations and rapid controller prototype (RCP) experiments. Comprehensive comparisons and analysis are presented by evaluating hydrogen consumption system efficiency and voltage bus stability. The results show that the PSO-FL algorithm can further improve fuel economy and achieve superior overall dynamic performance when controlling a UAV’s fuel-cell powertrain.
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer electrochemical reactions fluid flow energy transport and species transport. The Butler‐Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation‐ and diffusion‐controlled Butler‐Volmer equation. Three different electrode reaction models are examined in the study which is named case 1 case 2 and case 3 respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion‐controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte which demonstrates the non‐linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.
Recent Progress in Hydrogen Storage
Nov 2008
Publication
The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although in the long-term the ultimate technological challenge is large-scale hydrogen production from renewable sources the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles.
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are remarkably higher than those in Al-free austenite indicating that the presence of Al is more favorable for reducing hydrogen mobility. In Al-free austenite interstitial hydrogen atoms caused a remarkable increase in lattice compressive stress and a distinct decrease in bulk shear and Young’s moduli. Whereas in Al-containing austenite the lattice compressive stress and the mechanical deterioration induced by interstitial hydrogen atoms were effectively suppressed.
Interfacial Confinement of Ni-V2O3 in Molten Salts for Enhanced Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3.electrodes consisting of nanostrip-like V2O3.perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3.accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H* for generating H2.
Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Oxygen Mixture in a Channel with Triangular Obstacles
Sep 2021
Publication
Study of flame acceleration and deflagration-to-detonation transition (DDT) in obstructed channels is an important subject of research for hydrogen safety. Experiments and numerical simulations of DDT in channels equipped with triangular obstacles were conducted in this work. High-speed schlieren photography and pressure records were used to study the flame shape changes flame propagation and pressure build up in the experiments. In the simulations the fully compressible reactive Navier–Stokes equations coupled with a calibrated chemical-diffusion model for stoichiometric hydrogen-oxygen mixture were solved using a high-order numerical method. The simulations were in good agreement with the experiments. The results show that the triangular obstacles significantly promote the flame acceleration and provide conditions for the occurrence of DDT. In the early stages of flame acceleration vortices are generated in the gaps between adjacent obstacles which is the main cause for the flame roll-up and distortion. A positive feedback mechanism between the combustiongenerated flow and flame propagation results in the variations of the size and velocity of vortices. The flame-vortex interactions cause flame fragmentation and consequently rapid growth in flame surface area which further lead to flame acceleration. The initially laminar flame then develops into a turbulent flame with the creation of shocks shock-flame interactions and various flame instabilities. The continuously arranged obstacles interact with shocks and flames and help to create environments in which a detonation can develop. Both flame collision and flame-shock interaction can give rise to detonation in the channels with triangular obstacles.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Investigation of the Influence of Pre-Charged Hydrogen on Fracture Toughness of As-Received 2.25Cr1Mo0.25V Steel and Weld
Jun 2018
Publication
Fracture failure caused by hydrogen embrittlement (HE) is a major concern for the system reliability and safety of hydrogen storage vessels which are generally made of 2.25Cr1Mo0.25V steel. Thus study of the influence of pre-charged hydrogen on fracture toughness of as-received 2.25Cr1Mo0.25V steel and weld is of significant importance. In the current work the influence of hydrogen on fracture toughness of as-received 2.25Cr1Mo0.25V steel and weld was systematically studied. Base metal (BM) and weld metal (WM) specimens under both hydrogen-free and hydrogen-charged conditions were tested using three-point bending tests. Hydrogen was pre-charged inside specimens by the immersion charging method. The J-integral values were calculated for quantitatively evaluating the fracture toughness. In order to investigate the HE mechanisms optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the microstructure of BM and WM specimens. The results revealed that the presence of pre-charged hydrogen caused a significant decrease of the fracture toughness for both BM and WM specimens. Moreover the pre-charged hydrogen led to a remarkable transition of fracture mode from ductile to brittle pattern in 2.25Cr1Mo0.25V steel.
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Especially the Mg-NiTiO3/TiO2 composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8 ± 1.2 (nanocrystalline Mg) kJ/mol to 34.2 ± 0.2 kJ/mol. In addition the hydrogenated sample began to release hydrogen at about 193.2 °C and eventually desorbed 6.6 wt% H2. The desorption enthalpy of the hydrogenated Mg-NiTiO3 -C was estimated to be 78.6 ± 0.8 kJ/mol 5.3 kJ/mol lower compared to 83.9 ± 0.7 kJ/mol of nanocrystalline Mg. Besides the sample revealed splendid cyclic stability during 20 cycles. No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt% hydrogen capacity degradation was observed. Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3 -C composite which might serve as a reference for future design of highly effective hydrogen storage materials.
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
Synthetic Natural Gas Production from CO2 and Renewable H2: Towards Large-scale Production of Ni–Fe Alloy Catalysts for Commercialization
Apr 2020
Publication
Synthetic natural gas (SNG) is one of the promising energy carriers for the excessive electricity generated from variable renewable energy sources. SNG production from renewable H2 and CO2 via catalytic CO2 methanation has gained much attention since CO2 emissions could be simultaneously reduced. In this study Ni–Fe/(MgAl)Ox alloy catalysts for CO2 methanation were prepared via hydrotalcite precursors using a rapid coprecipitation method. The effect of total metal concentration on the physicochemical properties and catalytic behavior was investigated. Upon calcination the catalysts showed high specific surface area of above 230 m2 g−1. Small particle sizes of about 5 nm were obtained for all catalysts even though the produced catalyst amount was increased by 10 times. The catalysts exhibited excellent space-time yield under very high gas space velocity (34000 h−1) irrespective of the metal concentration. The CO2 conversions reached 73–79% at 300 °C and CH4 selectivities were at 93–95%. Therefore we demonstrated the potential of large-scale production of earth-abundant Ni–Fe based catalysts for CO2 methanation and the Power-to-Gas technology.
Improved Hydrogen Separation Performance of Asymmetric Oxygen Transport Membranes by Grooving in the Porous Support Layer
Nov 2020
Publication
Hydrogen separation through oxygen transport membranes (OTMs) has attracted much attention. Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances. However the resistance in the porous support layer (PSL) limits the overall separation performance significantly. Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the separation performance. There is no relevant research on studying the influence of the PSL on hydrogen separation performance so far. Herein we prepared Ce0.85Sm0.15O1.925 – Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) asymmetric membranes with straight grooves in PSL by tape-casting and laser grooving. A ~30% improvement in the hydrogen separation rate was achieved by grooving in the PSLs. It indicates that the grooves may reduce the concentration polarization resistance in PSL for the hydrogen separation process. This work provides a straight evidence on optimizing the structures of PSL for improving the hydrogen separation performance of the membrane reactors.
Enhanced Hydrogen Storage of Alanates: Recent Progress and Future Perspectives
Feb 2021
Publication
The global energy crisis and environmental pollution have caused great concern. Hydrogen is a renewable and environmentally friendly source of energy and has potential to be a major alternative energy carrier in the future. Due to its high capacity and relatively low cost of raw materials alanate has been considered as one of the most promising candidates for hydrogen storage. Among them LiAlH4 and NaAlH4 as two representative metal alanates have attracted extensive attention. Unfortunately the high desorption temperature and sluggish kinetics restrict its practical application. In this paper the basic physical and chemical properties as well as the hydrogenation/dehydrogenation reaction mechanism of LiAlH4 and NaAlH4 are briefly reviewed. The recent progress on strategic optimizations toward tuning the thermodynamics and kinetics of the alanate including nanoscaling doping catalysts and compositing modification are emphatically discussed. Finally the coming challenges and the development prospects are also proposed in this review.
Irreversible Hydrogen Embrittlement Study of B1500HS High Strength Boron Steel
Dec 2020
Publication
The reversible/irreversible recovery of mechanical properties and the microstructure characteristics of a typical hot-stamped steel B1500HS have been studied under different conditions of hydrogen permeation. Initially all tested specimens were permeated by hydrogen atoms through an electrochemical hydrogen charging scheme. Then the comparisons between different currents and charging time were performed. The influence of different storage time was compared as well. Additionally the effect of the plastic strain introduced by pre-stretching was also investigated. The experimental results showed that the negative impact of hydrogen embrittlement was altered from reversible to irreversible as the magnitude of the charging current increased. The hydrogen blistering and the hydrogen charging-induced cracks were both observed and inspected in the tested samples regarding the irreversible situation. Moreover the adverse influence of hydrogen embrittlement was enhanced by plastic pre-straining or extending the charging period. At the micro-level hydrogen charging-induced cracks generally were generated at defect locations such as the prior austenite grain boundaries and lath martensite interfaces. Particularly crack direction occurred perpendicular to the orientation of lath martensite and transgranular fracture occurred at the prior austenite grains.
Hollow Cobalt Sulfide Nanocapsules for Electrocatalytic Selective Transfer Hydrogenation of Cinnamaldehyde with Water
Feb 2021
Publication
Designing nanostructured electrocatalysts for selective transfer hydrogenation of α β-unsaturated aldehydes with water as the hydrogen source is highly desirable. Here a facile self-templating strategy is designed for the synthesis of CoS2 and CoS2-x nanocapsules (NCs) as efficient cathodes for selective transfer hydrogenation of cinnamaldehyde a model α β-unsaturated aldehyde. The hollow porous structures of NCs are rich in active sites and improve mass transfer resulting in high turnover frequency. The specific adsorption of the styryl block on pristine CoS2 NCs is conducive to the selective formation of half-hydrogenated hydrocinnamaldehyde with 91.7% selectivity and the preferential adsorption of the C = O group induced by sulfur vacancies on defective CoS2-x NCs leads to the full-hydrogenated hydrocinnamyl alcohol with 92.1% selectivity. A cross-coupling of carbon and hydrogen radicals may be involved in this electrochemical hydrogenation reaction. Furthermore this selective hydrogenation method is also effective for other α β-unsaturated aldehydes illustrating the universality of the method.
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
Molecular Dynamics Studies of Hydrogen Effect on Intergranular Fracture in α-Iron
Nov 2020
Publication
In the current study the effect of hydrogen atoms on the intergranular failure of α-iron is examined by a molecular dynamics (MD) simulation. The effect of hydrogen embrittlement on the grain boundary (GB) is investigated by diffusing hydrogen atoms into the grain boundaries using a bicrystal body-centered cubic (BCC) model and then deforming the model with a uniaxial tension. The Debye Waller factors are applied to illustrate the volume change of GBs and the simulation results suggest that the trapped hydrogen atoms in GBs can therefore increase the excess volume of GBs thus enhancing intergranular failure. When a constant displacement loading is applied to the bicrystal model the increased strain energy can barely be released via dislocation emission when H is present. The hydrogen pinning effect occurs in the current dislocation slip system <111>{112}. The hydrogen atoms facilitate cracking via a decrease of the free surface energy and enhance the phase transition via an increase in the local pressure. Hence the failure mechanism is prone to intergranular failure so as to release excessive pressure and energy near GBs. This study provides a mechanistic framework of intergranular failure and a theoretical model is then developed to predict the intergranular cracking rate
Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel
Feb 2019
Publication
The effects of temperature on bulk hydrogen concentration and diffusion have been tested with the Devanathan–-Stachurski method. Thus a model based on hydrogen potential diffusivity loading frequency and hydrostatic stress distribution around crack tips was applied in order to quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale embrittlement mechanism which is generated by hydrogen atom delivery to the crack tip under fatigue loading and rationalized the ΔK dependence of traditional models. Hence this work could be applied to optimize operations that will prolong the life of the pipeline.
No more items...