Belarus
1D Phenomenological Model Estimating the Overpressure which could be Generated by Gas Explosion in a Congested Space
Sep 2005
Publication
A phenomenological approach is developed to calculate the velocity of flame propagation and to estimate the value of pressure peak when igniting gaseous combustible mixtures in a congested space. The basic idea of this model is afterburning of the remanent fuel in pockets of congested space behind the flame front. The estimation of probable overpressure peak is based on solution of one-dimensional problem of the piston (having corresponding symmetry) moving with given velocity in polytropic gas. Submitted work is the first representation of such phenomenological approach and is realized for the simplest situation close to one-dimensional.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Comprehensive Analysis of the Operation of an Internal Combustion Engine Fueled by Hydrogen-containing Mixtures
Mar 2023
Publication
At present hydrogen is considered as one of the most promising motor fuels capable of replacing traditional hydrocarbons. This article presents the results of a comprehensive experimental study of the effect of hydrogen additives on the main parameters of a gasoline spark-ignition ICE. The thermophysical parameters of the processes of ignition and combustion inside the cylinder with the addition of hydrogen in the amount of 0%–20% of the air volume as well as the fuel and energy characteristics of the engine and its impact on the environment were studied. It has been established that hydrogen leads to significant changes in the engine operation. It increases some parameters and reduces others improving or worsening them compared to running on pure gasoline. So with a 20% H2 addition at an average engine load the following parameters increase: the maximum pressure in the cylinder by almost 20%; the rate of pressure increase in the combustion chamber by 2.8 times; the highest combustion temperature by 140 K. At the same time the following parameters decrease: average indicator pressure by 18%; ignition timing by 82% (6◦ to TDC versus 34◦ for gasoline); crank angle corresponding to the maximum pressure by 32% (9.4◦ versus 13.9◦ for gasoline); crank angle corresponding to maximum temperature by 54% (17.7◦ after TDC versus 38.3◦ for clean gasoline); ignition delay time (τind = 0.32 ms) and visible combustion time (τvis = 1.58 ms) by 4 and 2.3 times respectively.
No more items...