Belgium
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance
Aug 2022
Publication
Fuel cell electric vehicles (FCEV) are developing quickly from passenger vehicles to trucks or fork-lifts. Policymakers are supporting an ambitious strategy to deploy fuel cell electrical vehicles with infrastructure as hydrogen refueling stations (HRS) as the European Green deal for Europe. The hydrogen fuel quality according to international standard as ISO 14687 is critical to ensure the FCEV performance and that poor hydrogen quality may not cause FCEV loss of performance. However the sampling system is only available for nozzle sampling at HRS. If a FCEV may show a lack of performance there is currently no methodology to sample hydrogen fuel from a FCEV itself. It would support the investigation to determine if hydrogen fuel may have caused any performance loss. This article presents the first FCEV sampling system and its comparison with the hydrogen fuel sampling from the HRS nozzle (as requested by international standard ISO 14687). The results showed good agreement with the hydrogen fuel sample. The results demonstrate that the prototype developed provides representative samples from the FCEV and can be an alternative to determine hydrogen fuel quality. The prototype will require improvements and a larger sampling campaign.
The Direct Reduction of Iron Ore with Hydrogen
Aug 2022
Publication
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2 -lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2 -driven reduction was examined and found to exceed 90% with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm and operating temperatures close to 500 ◦C. Towards the future of direct steel ore reduction cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4 ) methanol and ethanol offering an important potential towards production cost yield and environmental CO2 emission reductions.
THyGA - Roadmap H2NG for Europe
May 2023
Publication
This report aims at summarizing the different stakeholders’ opinions on H2NG blends and cross them with the THyGA results to recommend some necessary actions to prepare the field for operational large-scale blending (liability delayed ignition adjustment…).
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Hydrogen Europe Podcast: Wind and Hydrogen - Delivering REPower EU
Jun 2022
Publication
In this episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with Wind Europe's CEO Giles Dickson. Starting off on how Giles joined Wind Europe the two CEOs discuss the responsibilities their industries have in the new energy strategy set in the REPowerEU as well as the fruitful synergies between hydrogen and wind.
Hydrogen Europe Podcast: The Commision's Support to the Hydrogen Ecosystem
Jul 2022
Publication
In this episode titled "The Commission's support to the hydrogen ecosystem" our CEO Jorgo Chatzimarkakis discusses with Rosalinde van der Vlies Clean Planet Director DG RTD - European Commission. Starting off on how Rosalinde joined the Commission the two speakers discuss the Commission's support in developing a hydrogen ecosystem also in light of its participation in the Clean Hydrogen Partnership and the implications arising from the REPowerEU.
Policy Toolbox for Low Carbon and Renewable Hydrogen
Nov 2021
Publication
The report “Policy Toolbox for Low Carbon and Renewable Hydrogen” is based on an assessment of the performance of hydrogen policies in different stages of market maturity and segments of the value chain. 48 policies were shortlisted based on their economic efficiency and effectiveness and mapped to barriers across the value chain and over time. These policies were subsequently clustered into policy packages for three country archetypes: a self-sufficient hydrogen producer an importer and an exporter of hydrogen.
The paper can be found on their website.
The paper can be found on their website.
2022 EU and National Policies Report
Mar 2022
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: This report covers 34 entities and it reflects data collected January 2022 – February 2022. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between member states. Mobility policies for FCEVs are the most common policy types. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel
Mar 2024
Publication
The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g. hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol) CO (0.14–5 µmol/mol) and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed for the first time that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.
2022 Hydrogen Supply Capacity and Demand
Mar 2022
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to provide an overview of the hydrogen market in Europe and to track industry’s progress in deploying clean hydrogen technologies. Scope: Data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2020. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by refining and ammonia industries with four countries (DE NL PL ES) responsible for more than half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.42% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
2021 Education & Training Report
Jul 2021
Publication
Purpose: The Training section of the Education and Training module of the FCHO offers a repository of training available in Europe. In addition to the training programmes Educational materials which are publicly accessible online are also available to access on the FCHO. https://www.fchobservatory.eu/observatory/education-and-training Scope: The training courses are displayed by location within a map and users can explore the data by selecting the type of training of interest. Two additional filters on the language and the focus of the training are available to refine the search according to user needs. Users of the online tool can be students professionals and individuals wishing to learn and be trained on FCH. To complement this mapping a repository of online resources is accessible on the FCHO. Users may retrieve reliable materials available for self-learning. Key Findings: Master programmes and professional training courses were the most mapped categories. There is a prevalence of training courses offered by Western European countries in the mapping. The majority of the training courses mapped are targeted at technicians engineers and doctorate. For Bachelor and Master programmes FCH is more often an element integrated in a programme than its main focus. “Hydrogen Production” and “Hydrogen end-uses: transports” were the most selected focus of courses among the 11 categories proposed. “Regulations Codes and Standards” was the least selected focus with only one training out of five tackling these aspects. Professional training is more often focusing on end-uses and safety than Master programmes. Master programmes put a strong emphasis on “Basic electrochemistry” “Hydrogen production”. European projects are the main source for publicly accessible materials to learn on FCH. Most of the materials listed are available in English. “Hydrogen End-Uses” is the focus category the most common in the materials listed.
2021 EU and National Policies Report
Jul 2021
Publication
Purpose: The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. https://www.fchobservatory.eu/observatory/policy-and-rcs/eu-policies https://www.fchobservatory.eu/index.php/observatory/policy-and-rcs/nationalpolicies Scope: While FCHO covers 38 entities around the world due to the unavailability of some data at the time of writing this report covers 34 entities. The report reflects data collected January 2021 – May 2021. Key Findings: Hydrogen policies are relatively commonplace among European countries but with large differences between Member States. EU hydrogen leaders do not lag behind global outliers such as South Korea or Japan.
2022 Standards Report
Feb 2022
Publication
Purpose: The standards module of the FCHO (https://www.fchobservatory.eu/observatory/Policyand-RCS/Standards) presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. Scope: This report presents the developments in European and international standards for the year 2021 and the start of 2022. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2022; on a European level many standards are still in the process of being drafted. In 2021 & 2022 11 new standards have been published on the subject of fuel cell technologies and safety and measurement protocols of hydrogen technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. In the upcoming years multiple standards will be replaced such as the ISO 12619 1-12 set of standards affecting 40% of all collected standards. Previous Reports: The first report was published in September 2020 followed up by a second report in 2021. This report is the 3 rd Annual report.
Towards a Prioritization of Alternative Energy Sources for Sustainable Shipping
Apr 2023
Publication
Studies on the prospects of the use of alternative fuels in the maritime industry have rarely been assessed in the context of developing countries. This study assesses seven energy sources for shipping in the context of Bangladesh with a view to ranking their prospects based on sustainability as well as identifying the energy transition criteria. Data were collected from maritime industry experts including seafarers shipping company executives government representatives and academics. The Bayesian Best-Worst Method (BWM) was used for ranking nine criteria related to the suitability and viability of the considered alternative energy sources. Next the PROMETHEE-GAIA method is applied for priority analysis of the seven energy alternatives. The findings reveal that capital cost alternative energy price and safety are the most important factors for alternative energy transition in Bangladesh. Apart from the benchmark HFO Liquified Natural Gas (LNG) HFO-Wind and LNG-Wind hybrids are considered the most viable alternatives. The findings of the study can guide policymakers in Bangladesh in terms of promoting viable energy sources for sustainable shipping.
Assessing the Balance Between Direct Electrification and the Use of Decarbonised Gases in the 2050 EU Energy System
Jan 2023
Publication
If Europe is to meet its 2050 decarbonisation objectives a change of paradigm needs to materialise. The energy sector cannot be understood any more as the sum of independent silos consisting of different energy vectors. Indeed a large number of technologies that are essential to meeting our decarbonisation targets are linking systems and markets currently being planned and operated without fully considering the potential benefits of adopting a holistic approach. If this situation is to persist large-scale sub-optimalities are likely to emerge if the planning and operations of the different components of the energy system will not be able to capture synergies and interdependencies between energy vectors and markets. Interlinkages between systems are appearing between all vectors both at the planning and operation levels. In the case of hydrogen these links are especially important as hydrogen technologies are linking the electricity methane and heat sectors (via electrolysis and hydrogen turbines repurposing of gas assets and hydrogen boilers respectively). Sector integration can allow to capture benefits both in terms of planning and operations:- The production of electrolytic hydrogen poses important challenges in terms of planning the deployment of renewable energy (RES) and electrolyser capacities in a way that ensures that the overall carbon emissions decrease in an effective and cost-efficient manner. Furthermore key questions related to the benefits of co-locating renewable capacities electrolysers and hydrogen demand centres can only be explored if a holistic perspective is adopted. Finally synergies can also appear if planning decisions are taken jointly between the electricity hydrogen and methane sectors as the optimal set of hydrogen infrastructure projects strongly depends on the ability to source electrolysers (link with the electricity sector) and on the possibility to repurpose part of the current infrastructure (link with the methane sector)- Similarly operational considerations also advocate for an integrated approach as electrolysers can provide important flexibility services to the electricity sector if provided with appropriate price signals. These considerations provide the motivation for this study which aims at performing a detailed examination of planning decisions and operational management of a 2050 power system with a focus on comparing different decarbonisation options for the provision of heat of different temperature levels.
2021 Technology & Markets Report
Jul 2021
Publication
Purpose: The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. https://www.fchobservatory.eu/observatory/technology-and-market Scope: Fuel cell shipment data is presented on a global basis. Other sections of the technology and market chapter (HRS data and FCEV data) are presented on a European basis. The report spans January 2020 – December 2020. Key Findings: COVID-19 has without doubt impacted the deployment of fuel cells and hydrogen in 2020 compared to industry expectations: Global Fuel Cell shipments > 1.3 GW Europe Fuel Cell shipments up to 148.6 MW Europe HRS in operation or under construction 162 FCEVs up 41% to 2774
2050 No-regret Options and Technology Lock-ins
Jan 2023
Publication
The present study (in the following referred to as study S4) takes a deeper look at the 2050 EU energy system. It builds upon a decarbonisation scenario developed in an earlier study of the METIS 2 project (study S61) which focusses on the EU electricity sector and its interlinkage with the hydrogen and the heat sectors. While study S6 aimed for a cost-optimal dimensioning of the EU power system the present study goes a step further and aims to derive more general conclusions. It sheds light on no-regret options towards the decarbonisation of the 2050 EU energy system potential technology lock-in risks and major drivers of uncertainty like system sensitivity to climate change and commodity prices. The analysis is complemented by an evaluation of the impact of an enhanced representation of hydrogen infrastructures and the associated constraints as these may impact the entire interlinked EU energy system.
THyGA - Test Report on Mitigation Solutions for Residential Natural Gas Appliances Not Designed for Hydrogen Admixture
Apr 2023
Publication
This report from the WP5 “Mitigation” provides information and test results regarding perturbations that hydrogen could cause to gas appliances when blended to natural gas especially on anatural draught for exhaust fumes or acidity for the condensates. The important topic of on-site adjustment is also studied with test results on alternative technologies and proposals of mitigation approaches.
Global Hydrogen Flows
Oct 2022
Publication
Authored by the Hydrogen Council in collaboration with McKinsey and Company Global Hydrogen Flows addresses the midstream challenge of aligning and optimizing global supply and demand. It finds that trade can reduce overall system costs.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
No more items...