Belgium
Challenges in the Use of Hydrogen for Maritime Applications
Jan 2021
Publication
Maritime shipping is a key factor that enables the global economy however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods and in this work we discuss the storage of hydrogen at high pressure in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant that circumvents this limitation via an added combustor after the CLC reactors. Without the added combustor the energy penalty amounts to 11.4%-points causing a high CO2 avoidance cost of $117.3/ton which is more expensive than a conventional NGCC plant with post-combustion capture ($93.8/ton) with an energy penalty of 8.1%-points. This conventional CLC plant would also require a custom gas turbine. With an added combustor fired by natural gas a standard gas turbine can be deployed and CO2 avoidance costs are reduced to $60.3/ton mainly due to a reduction in the energy penalty to only 1.4%-points. However due to the added natural gas combustion after the CLC reactor CO2 avoidance is only 52.4%. Achieving high CO2 avoidance requires firing with clean hydrogen instead increasing the CO2 avoidance cost to $96.3/ton when a hydrogen cost of $15.5/GJ is assumed. Advanced heat integration could reduce the CO2 avoidance cost to $90.3/ton by lowering the energy penalty to only 0.6%-points. An attractive alternative is therefore to construct the plant for added firing with natural gas and retrofit the added combustor for hydrogen firing when CO2 prices reach very high levels.
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this work steam co-gasification of landfill waste with biochar or biomass was carried out in a lab-scale reactor. The effect of the fuel blending ratio was investigated by varying the auxiliary fuel content in the range of 15e35 wt%. Moreover co-gasification tests were carried out at temperatures between 800 and 1000°C. The results indicate that adding either biomass or biochar enhances the H2 yield where the latter accounts for the syngas with the highest H2 concentration. At 800°C the addition of 35 wt% biochar can enhance the H2 concentration from 38 to 54 vol% and lowering the tar yield from 0.050 to 0.014 g/g-fuel-daf. No apparent synergetic effect was observed in the case of biomass co-gasification which might cause by the high Si content of landfill waste. In contrast the H2 production increases non-linearly with the biochar share in the fuel which indicates that a significant synergetic effect occurs during co-gasification due to the reforming of tar over biochar. Increasing the temperature of biochar co-gasification from 800 to 1000°C elevates the H2 concentration but decreases the H2/CO ratio and increases the tar yield. Furthermore the addition of biochar also enhances the gasification efficiency as indicated by increased values of the energy yield ratio.
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.<br/>Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce renewable ‘green’ hydrogen is water electrolysis using renewable electricity. The FCH JU has been supporting research and development of electrolyser technology and application projects aiming to increase the energy efficiency of electrolytic hydrogen production from renewable sources and to reduce costs.<br/>This study complements these activities by focusing on renewable hydrogen generation other than electrolysis. In this report these alternative hydrogen generation technologies are described characterized by their technical capabilities maturity and economic performance and assessed for their future potential.<br/>A methodology has been devised to first identify and structure a set of relevant green hydrogen pathways (eleven pathways depicted in the figure below) analyse them at a level of detail allowing a selection of those technologies which fit into and promise early commercialization in the framework of FCH 2 JU’s funding program.<br/>These originally proposed eleven pathways use solar thermal energy sunlight or biomass as major energy input.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Report on Socio-economic Impact of the FCH -JU Activities
Feb 2016
Publication
The FCH JU has with its industry and research partners worked since 2008 to develop and demonstrate FCH technologies along with development of the various business and environmental cases. It has involved a programme of increasingly ambitious demonstrations projects a consistent approach to research and development actions and a long term policy commitment. Developing the business and environmental cases for FCH technologies has created an increasingly compelling vision appealing to a range of stakeholders: to FCH technology businesses themselves assured by the long term commitment of the FCH JU to end users in terms of cost and operational performance potential and as critically to increasing numbers of policy and decision makers attracted by the substantial socio-economic benefits.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains
Dec 2012
Publication
A coalition of 40 industrial companies and government organizations financially supported by the FCH JU elaborated a technology neutral and fact-based comparative study on eight different powertrain technologies for urban buses in Europe from 2012 to 2030.<br/>According to the results of the study only fully electric powertrain buses (based on hydrogen batteries or trolley system) have the potential to achieve zero local emissions by drastically reducing well-to-wheel emissions.<br/>Following the positive comparative result for fuel cell hydrogen urban buses the FCH JU will launch a follow-up study that more specifically defines real uptake scenarios for market entry scheduled to starting before summer 2013.
Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe
Oct 2015
Publication
This report provides an outlook for jointly achieving a commercialisation pathway.<br/>Building on the findings of the 2012 FCH JU technology study on alternative powertrains for urban buses this report provides an assessment of the commercialisation pathway from an operational perspective. It reflects the actual situation in which operators deploy large scale demonstration projects in the next years from a rather conservative angle and argues why it makes sense to deploy FC buses now. The insights are based on first-hand data and assessments of the coalition members from the hydrogen and fuel cell industry as well as local governments and public transport operators in Europe.
Debunking the Myths of Hydrogen Production and Water Consumption
Dec 2020
Publication
In our factsheet where we debunk 3 myths around hydrogen production and water consumption: electrolysis uses vast amounts of water; electrolysis uses freshwater resources only and electrolysis is bound to create water stress in water-scarce regions.
Alloy Optimization for Reducing Delayed Fracture Sensitivity of 2000 MPa Press Hardening Steel
Jun 2020
Publication
Press hardening steel (PHS) is widely applied in current automotive body design. The trend of using PHS grades with strengths above 1500 MPa raises concerns about sensitivity to hydrogen embrittlement. This study investigates the hydrogen delayed fracture sensitivity of steel alloy 32MnB5 with a 2000 MPa tensile strength and that of several alloy variants involving molybdenum and niobium. It is shown that the delayed cracking resistance can be largely enhanced by using a combination of these alloying elements. The observed improvement appears to mainly originate from the obstruction of hydrogen-induced damage incubation mechanisms by the solutes as well as the precipitates of these alloying elements.
How EU Legislation Can Drive an Uptake of Sustainable Advanced Fuels in Aviation
Jul 2020
Publication
The report calls for a focus on new advanced alternative fuels in particular synthetic kerosene (efuels) which have the capacity to substantially reduce emissions and be scaled up to meet the fuel demands of the sector.
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
For aviation to reach zero emissions sustainable advanced fuels are needed to replace fossil kerosene currently used by the sector. The European Green Deal (EGD) includes a legislative proposal which would bring about a long overdue development and uptake of such fuels for the sector that legislative proposal is now being developed under the EU’s ReFuelEU initiative. However this initiative will only succeed if its support is limited to those fuels which can truly deliver emission reductions and which can be scaled up sustainably to meet the demand from the aviation sector. The paper recommends how such objectives can be achieved.
The ReFuelEU proposal should focus on these fuels with an ambitious programme combining mandates with financial support so that Europe's aviation sector is put on a pathway to net zero emissions.
Link to document download on Transport & Environment Website
Comparison of Hydrogen and Battery Electric Trucks
Jul 2020
Publication
Only emissions-free vehicles which include battery electric (BEVs) and hydrogen fuel cell trucks (FCEVs) can provide for a credible long-term pathway towards the full decarbonisation of the road freight sector. This document lays out the methodology and assumptions which were used to calculate the total cost of ownership (TCO) of the two vehicle technologies for regional delivery and long-haul truck applications. It also discusses other criteria such as refuelling and recharging times as well as potential payload losses.
Link to Document Download on Transport & Environment website
Link to Document Download on Transport & Environment website
The Hydrogen Trapping Ability of TiC and V4C3 by Thermal Desorption Spectroscopy and Permeation Experiments
Dec 2018
Publication
Hydrogen (H) presence in metals is detrimental as unpredictable failure might occur. Recent developments in material’s design indicated that microstructural features such as precipitates play an essential role in potentially increasing the resistance against H induced failure. This work evaluates the H trapping characteristics for TiC and V4C3 by thermal desorption spectroscopy and permeation experiments. Two microstructural conditions are compared: as quenched vs. quenched and tempered in which the carbides are introduced. The tempered induced precipitates are able to deeply trap a significant amount of H which decreases the H diffusivity in the materials and removes some of the detrimental H from the microstructure. For microstructural design purposes it is important to know the position of H. Here H is demonstrated to be trapped at the carbide/matrix interface by modifying the tempering treatment.
Efficient Hydrogen Storage in Defective Graphene and its Mechanical Stability: A Combined Density Functional Theory and Molecular Dynamics Simulation Study
Dec 2020
Publication
A combined density functional theory and molecular dynamics approach is employed to study modifications of graphene at atomistic level for better H2 storage. The study reveals H2 desorption from hydrogenated defective graphene structure V222 to be exothermic. H2 adsorption and desorption processes are found to be more reversible for V222 as compared to pristine graphene. Our study shows that V222 undergoes brittle fracture under tensile loading similar to the case of pristine graphene. The tensile strength of V222 shows slight reduction with respect to their pristine counterpart which is attributed to the transition of sp2 to sp3-like hybridization. The study also shows that the V222 structure is mechanically more stable than the defective graphene structure without chemically adsorbed hydrogen atoms. The current fundamental study thus reveals the efficient recovery mechanism of adsorbed hydrogen from V222 and paves the way for the engineering of structural defects in graphene for H2 storage.
The Role of Electrofuels under Uncertainties for the Belgian Energy Transition
Jul 2021
Publication
Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels such as hydrogen methane and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion economical storage solution for high capacity and ability to couple sectors (i.e. electricity to transport to heat or to industry). However the level of contribution of electric-energy carriers is unknown. To assess their role in the future we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g. price of natural gas efficiency of heat pump) to represent as closely as possible the future energy system. However these parameters can be highly uncertain especially for long-term planning. Consequently this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that compared to the deterministic cost-optimum situation the system cost accounting for uncertainties becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties their higher price and uncertainty.
Golden Hydrogen
Nov 2022
Publication
Hydrogen is a colorless compound to which symbolic colors are attributed to classify it according to the resources used in production production processes such as electrolysis and energy vectors such as solar radiation. Green hydrogen is produced mainly by electrolysis of water using renewable electricity from an electricity grid powered by wind geothermal solar or hydroelectric power plants. For grid-powered electrolyzers the tendency is to go larger to reach the gigawatt-scale. An evolution in the opposite direction is the integration of the photophysics of sunlight harvesting and the electrochemistry of water molecule splitting in solar hydrogen generator units with each unit working at kilowatt-scale or less. Solar hydrogen generators are intrinsically modular needing multiplication of units to reach gigawatt-scale. To differentiate these two fundamentally different technologies the term ‘golden hydrogen’ is proposed referring to hydrogen produced by modular solar hydrogen generators. Decentralized modular production of golden hydrogen is complementary to centralized energy-intensive green hydrogen production. The differentiation between green hydrogen and golden hydrogen will facilitate the introduction of the additionality principle in clean hydrogen policy.
THyGA - Overview of Relevant Existing Certification Experience and On-going Standardization Activities in the EU and Elsewhere Related to Gas Appliances Using H2NG
Oct 2021
Publication
This 2nd deliverable from WP4 gives an overview of relevant existing certification experience on-going standardization activities and field trials in the European Union and other countries regarding gas appliances using H2NG. It gives a picture of the today’s situation as many of the identified initiatives are ongoing and progressing continuously.
Statistics, Lessons Learnt and Recommendations from the Analysis of the Hydrogen Incidents and Accidents Database (HIAD 2.0)
Sep 2021
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired incidents which was initially developed in the frame of HySafe an EC co-funded Network of Excellence in the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC). It was updated by JRC as HIAD 2.01 in 2016 with the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). Since the launch of the European Hydrogen Safety Panel2 (EHSP) initiative in 2017 by FCH 2 JU the EHSP has worked closely with JRC to upload additional/new incidents to HIAD 2.0 and analyze them to gather statistics lessons learnt and recommendations through Task Force 3. The first report to summarise the findings of the analysis was published by FCH 2 JU in September 2019. Since the publication of the first report the EHSP and JRC have continuously worked together to enlarge HIAD 2.0 by adding newly occurred incidents as well as quality historic incidents which were not previously uploaded to HIAD 2.0. This has facilitated the number of validated incidents in HIAD 2.0 to increase from 272 in 2018 to 593 in March 2021. This number is also dynamic and continues to increase as new incidents are being continuously added by both EHSP and JRC; and validated by JRC. The overall quality of the published incidents has also been improved whenever possible. For example additional information has been added to some existing incidents. Since mid-2020 EHSP Task Force TF3 has further analysed the 485 events which were in the database as of July 2020. For completeness of the statistics these include the events considered in our first report3 as well as the newly added/validated events since then. In this process the EHSP has also re-visited the lessons learnt in the first report to harmonise the approaches of analysis and improve the overall analysis. The analysis has comprehensively covered statistics lessons learnt and recommendations. The increased number of incidents has also made it viable to extract statistics from the available incidents at the time of the analysis including previously available incidents. It should be noted that some incidents reported is of low quality therefore it was not included in the statistical analysis.
Supporting Hydrogen Technologies Deployment in EU Regions and Member States: The Smart Specialisation Platform on Energy (S3PEnergy)
May 2018
Publication
In order to maximise European national and regional research and innovation potential the European Union is investing in these fields through different funding mechanisms such as the ESIF or H2020 programme. This investment plan is part of the European 2020 strategy where the concept of Smart Specialisation is also included.<br/>Smart Specialisation is an innovation policy concept designed to promote the efficient and effective use of public investment in regional innovation in order to achieve economic growth. The Smart Specialisation Platform was created to support this concept by assisting regions and Member States in developing implementing and reviewing their research and innovation Smart Specialisation strategies.<br/>The Smart Specialisation Platform comprises several thematic platforms. The thematic Smart Specialisation Platform on energy (S3PEnergy) is a joint initiative of three European Commission services: DG REGIO DG ENER and the Joint Research Centre (JRC). The main objective of the S3PEnergy is to support the optimal and effective uptake of the Cohesion Policy funds for energy and to better align energy innovation activities at national local and regional level through the identification of the technologies and innovative solutions that support in the most cost-effective way the EU energy policy priorities.<br/>In the particular case of hydrogen technologies the activities of the platform are mainly focused on supporting the new Fuel Cells and Hydrogen Joint Undertaking (FCH JU) initiative involving regions and cities. To date more than 80 European cities and regions have committed to participate in this initiative through the signature of a Memorandum of Understanding and more participants are expected to join. S3PEnergy is helping in the identification of potential combination of H2020 funding (provided through FCH JU) and ESIF.<br/>To identify potential synergies among these two funding sources a mapping of the different ESIF opportunities has been performed. In order to map these opportunities Operational Programmes (OPs) and research and innovation strategies for Smart Specialisation (RIS3) of the different European regions and Member States were analysed. The results of this mapping and analysis are presented in this paper."
Safety Planning for Hydrogen and Fuel Cell Projects
Jul 2019
Publication
The document provides information on safety planning monitoring and reporting for the concerned hydrogen and fuel cell projects and programmes in Europe. It does not replace or contradict existing regulations which prevails under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist in identifying minimum safety requirements hazards and associated risks and in generating a quality safety plan that will serve as an assisting guide for the inherently safer conduct of all work related to the development and operation of hydrogen and fuel cell systems and infrastructure. A safety plan should be revisited periodically as part of an overall effort to pay continuous and priority attention to the associated safety aspects and to account for all modifications of the considered system and its operations. Potential hazards failure mechanisms and related incidents associated with any work process or system should always be identified analysed reported (recorded in relevant knowledge databases e.g. HIAD 2.0 or HELLEN handbooks papers etc.) and eliminated or mitigated as part of sound safety planning and comprehensive hydrogen safety engineering which extends beyond the recommendations of this document. All relevant objects or aspects that may be adversely affected by a failure should be considered including low frequency high consequences events. So the general protection objective is to exclude or at least minimise potential hazards and associated risks to prevent impacts on the following:
- People. Hazards that pose a risk of injury or loss of life to people must be identified and eliminated or mitigated. A complete safety assessment considers not only those personnel who are directly involved in the work but also others who are at risk due to these hazards.
- Property. Damage to or loss of equipment or facilities must be prevented or minimised. Damage to equipment can be both the cause of incidents and the result of incidents. An equipment failure can result in collateral damage to nearby equipment and property which can then trigger additional equipment failures or even lead to additional hazards and risks e.g. through the domino effect. Effective safety planning monitoring and reporting considers and minimises serious risk of equipment and property damage.
- Environment. Damage to the environment must be prevented. Any aspect of a natural or the built environment which can be harmed due to a hydrogen system or infrastructure failure should be identified and analysed. A qualification of the failure modes resulting in environmental damage must be considered.
Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System
Nov 2021
Publication
The simultaneous photocatalytic H2 evolution with environmental remediation over semiconducting metal oxides is a fascinating process for sustainable fuel production. However most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon a careful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrometer (QMS) was used for the continuous flow monitoring of the evolved gases while high performance ion chromatography (HPIC) isotopic labeling and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photoKolbe reaction mechanism a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2 HD and/or D2 matched those of the solvent; however using D2O decreased the reaction rate. Interestingly the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism and thus the hydrogen yield as indicated by the QMS and the EPR measurements. The added KI promoted H2 evolution to reach the theoretically predictable amount and inhibited the formation of intermediates without affecting the oxalic acid degradation rate. The proposed mechanism by which KI boosts the photocatalytic performance is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reforming.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Stochastic Low-order Modelling of Hydrogen Autoignition in a Turbulent Non-premixed Flow
Jul 2022
Publication
Autoignition risk in initially non-premixed flowing systems such as premixing ducts must be assessed to help the development of low-NOx systems and hydrogen combustors. Such situations may involve randomly fluctuating inlet conditions that are challenging to model in conventional mixture-fraction-based approaches. A Computational Fluid Dynamics (CFD)-based surrogate modelling strategy is presented here for fast and accurate predictions of the stochastic autoignition behaviour of a hydrogen flow in a hot air turbulent co-flow. The variability of three input parameters i.e. inlet fuel and air temperatures and average wall temperature is first sampled via a space-filling design. For each sampled set of conditions the CFD modelling of the flame is performed via the Incompletely Stirred Reactor Network (ISRN) approach which solves the reacting flow governing equations in post-processing on top of a Large Eddy Simulation (LES) of the inert hydrogen plume. An accurate surrogate model namely a Gaussian Process is then trained on the ISRN simulations of the burner and the final quantification of the variability of autoignition locations is achieved by querying the surrogate model via Monte Carlo sampling of the random input quantities. The results are in agreement with the observed statistics of the autoignition locations. The methodology adopted in this work can be used effectively to quantify the impact of fluctuations and assist the design of practical combustion systems. © 2022 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute.
The European Hydrogen Market Landscape
Nov 2023
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing a full overview of the hydrogen market and the deployment of clean hydrogen technologies. As of the end of 2022 a total of 476 operational hydrogen production facilities across Europe boasting a cumulative hydrogen production capacity of approximately 11.30 Mt were identified. Notably the largest share of this capacity is contributed by key European countries including Germany the Netherlands Poland Italy and France which collectively account for 56% of the total hydrogen capacity. The hydrogen consumption in Europe has been estimated at approximately 8.23 Mt reflecting an average capacity utilisation rate of 73%. It's worth highlighting that conventional hydrogen production methods encompassing reforming by-product production from ethylene and styrene and by-product electrolysis collectively yield 11.28 Mt of hydrogen capacity. These conventional processes are distributed across 376 production facilities constituting 99.9% of the total production capacity in 2022. Throughout the year 2022 there were no newly commissioned hydrogen production facilities that integrated carbon capture technology into their operations. Additionally a notable presence of water electrolysis-based hydrogen production projects in Europe was identified. There was a total of 97 water electrolysis projects with 67 of them having a minimum capacity of 0.5 MW resulting in a cumulative production capacity of 174.28 MW. Furthermore 46 such projects were found to be under construction and are anticipated to contribute an additional 1199.07 MW of water electrolysis capacity upon becoming operational with the estimated timeframe ranging from January 2023 to 2025. A significant 87% of the total hydrogen production capacity in Europe is dedicated to onsite captive consumption indicating that it is primarily produced and used within the facility. The remaining 13% of capacity is specifically allocated for external distribution and sale characterizing what's known as merchant consumption. Despite the prevailing dominance of captive hydrogen production within Europe it's noteworthy that thousands of metric tonnes of hydrogen are already being traded and distributed across the continent. These transfers often occur through dedicated hydrogen pipelines or transportation via trucks. In 2022 an example of this growing trend was the hydrogen export from Belgium to the Netherlands which emerged as the single most significant hydrogen flow between European countries constituting a substantial 75% of all hydrogen traded in Europe. Belgium earned distinction as Europe's leading hydrogen exporter with 78% of the hydrogen that flowed between European countries originating 6 from its facilities. Conversely the Netherlands played a pivotal role as Europe's primary hydrogen importer accounting for an impressive 76% of the hydrogen imported into the continent. The rise of the clean hydrogen market in Europe coupled with the European Union's ambition to import 10 Mt of renewable hydrogen from non-EU sources by 2030 is expected to drive an increase in hydrogen flows both exports and imports among European countries. In 2022 the total demand for hydrogen in Europe was estimated to be 8.19 Mt. The biggest share of hydrogen demand comes from refineries which were responsible for 57% of total hydrogen use (4.6 Mt) followed by the ammonia industry with 24% (2.0 Mt). Together these two sectors consumed 81% of the total hydrogen consumption in Europe. Clean hydrogen demand while currently making up less than 0.1% of the overall hydrogen demand is notably driven by the mobility sector. Forecasts project an impressive growth trajectory in total hydrogen demand for Europe over the coming decades. Projections show a remarkable 127% surge from 2030 to 2040 followed by a substantial 63% increase from 2040 to 2050. Considering the current hydrogen demand there is a projected 51% increase until 2030. Throughout the three decades under examination the industrial sector is anticipated to maintain its predominant position consistently demonstrating the highest demand for hydrogen. However this conclusion refers to average values and variations that may exist. The total number of Hydrogen Fuel Cell Electric Vehicles (FCEV) registrations in Europe in 2022 was estimated at 1537 units. In comparison to the previous year the number of registrations increased by 31%. This surge in registrations has had a pronounced impact on the overall FCEV fleet's evolution in Europe which increased from 4050 units to 5570 (+38%). Notably passenger cars dominated the landscape constituting 86% of the total FCEV fleet. Exploring the latest advancements in hydrogen infrastructure across Europe in 2022 the hydrogen distribution network comprised spanning a total length of 1569 km. Within Europe the largest networks are situated in Belgium and Germany at 600 km and 400 km respectively. Of particular importance is the cross-border network of France Belgium and the Netherlands spanning a total of 964 km. To keep pace with the rising number of Fuel Cell Electric Vehicles (FCEVs) on European roads and promote their wider integration it is key to ensure sufficient accessibility to refuelling infrastructure. Consequently many countries are endorsing the establishment of hydrogen refuelling stations (HRS) so that they are publicly accessible on a nationwide scale. More recharging and refuelling stations for alternative fuels will be deployed in the coming years across Europe enabling the transport sector to significantly reduce its carbon footprint following the adoption of the alternative fuel infrastructure regulation (AFIR). Part of the regulation's main target is that hydrogen refuelling stations serving both cars and lorries must be deployed from 7 2030 onwards in all urban nodes and every 200 km along the TEN-T core network. Since 2015 the total number of operational and publicly accessible HRS in Europe has grown at an accelerated pace from 38 to 178 by the summer of 2023. Germany takes the lead having the largest share at approximately 54% of the total number of HRS with 96 stations currently operational. The majority of the HRS (89%) are equipped with 700 bar car dispensers. In 2022 the levelized production costs of hydrogen generated through Steam Methane Reforming (SMR) in Europe averaged approximately 6.23 €/kg H2. When incorporating a carbon capture system the average cost of hydrogen production via SMR in Europe increased to 6.38 €/kg H2. Additionally the production costs of hydrogen in Europe for 2022 utilizing grid electricity averaged 9.85 €/kg H2. Hydrogen production costs through electrolysis with a direct connection to a renewable energy source had an average estimated cost of 6.86 €/kg. As of May 2023 Europe's operational water electrolyser manufacturing capacity stands at 3.11 GW/year with an additional 2.64 GW planned by the end of 2023. Alkaline technologies make up 53% of the total capacity. Looking ahead to 2025 ongoing projects are expected to raise the total capacity to 7.65 GW/year. Fuel cell deployment in Europe has showed an increasing trend over the past decade. The total number of shipped fuel cells were forecasted on around 11200 units in 2021 and a total capacity of 190 MW. The most significant increase in capacity occurred between 2018 and the forecast of 2021 (+148.8 MW).
Odorisation of Natural Gas/Hydrogen Mixure and Pure Hydrogen
Dec 2023
Publication
MARCOGAZ has prepared this document to provide comprehensive information on the odorisation of hydrogen and natural gas (H2-NG) mixtures as well as pure hydrogen. The primary goal is to assist in determining the crucial data to be taken into account when odorising gases containing hydrogen.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
Assessment and Lessons Learnt from HIAD 2.0 – Hydrogen Incidents and Accidents Database
Sep 2019
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired events (incidents or accidents). It was initially developed in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC) and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events.<br/>Starting from June 2016 JRC has been developing a new version of the database (HIAD 2.01). With the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learnt and other relevant information related to hydrogen technology; the database is publicly released and the events are anonymized. The database currently contains over 250 events. It aims to contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.<br/>The FCH 2 JU launched the European Hydrogen Safety Panel (EHSP2) initiative in 2017. The mission of the EHSP is to assist the FCH 2 JU at both programme and project level in assuring that hydrogen safety is adequately managed and to promote and disseminate hydrogen safety culture within and outside of the FCH 2 JU programme. Composed of a multidisciplinary pool of experts – 16 experts in 2018 - the EHSP is grouped in small ad-hoc working groups (task forces) according to the tasks to be performed and the expertise required. In 2018 Task Force 3 (TF3) of the ESHP has encompassed the analysis of safety data and events contained in HIAD 2.0 operated by JRC and supported by the FCH 2 JU. In close collaboration with JRC the EHSP members have systematically reviewed more than 250 events.<br/>This report summarizes the lessons learnt stemmed from this assessment. The report is self-explanatory and hence includes brief introduction about HIAD 2.0 the assessment carried out by the EHSP and the results stemmed from the joint assessment to enable new readers without prior knowledge of HIAD 2.0 to understand the rationale of the overall exercise and the lessons learnt from this effort. Some materials have also been lifted from the joint paper between JRC and EHSP which will also be presented at the International Conference on Hydrogen Safety (ICHS 2019) to provide some general and specific information about HIAD 2.0.
Fuel Cells and Hydrogen Observatory Report: Technology and Market
Mar 2022
Publication
The information in this report covers the period January 2021 – December 2021. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this edition data to the end of 2021 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: Application: Total system shipments are divided into Transport Stationary and Portable applications Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies. This year the report also includes data relating to electrolysers commissioned within Europe. Information is presented on the number of hydrogen refuelling stations (HRS) deployed since 2014 with detailed information on HRS in operation including pressure capacity etc. In parallel the observatory provides data on the registered fuel cell electric vehicles (FCEVs) on European roads providing an indication of the speed of adoption of hydrogen in the transport sector. This annual report is an enrichment analysis of the data available on the FCHO providing global context and insights on trends observed year-over-year. Electrolyser systems commissioned for each calendar year within Europe are presented as both the number of units and the total system power rating in megawatts (MW). The data is further divided by: Number of Electrolyser Units Commissioned: The number of units brought online each year in Europe from 2000 until 2021. Application: Total systems commissioned are divided in Transport Fuel Industry Feedstock Steel Making Industrial Heat Power Generation Export Grid Injection and Sector Coupling. Electrolyser Type: Number for each of the different electrolyser types commissioned are provided. Region of deployment: Region where the electrolyser was commissioned. All sections in the Technology & Market module are updated following an annual data collection and validation cycle and the annual report is published the following Spring.
The European Hydrogen Policy Landscape
Apr 2024
Publication
This report aims to summarise the status of the European hydrogen policies and standards landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing an overview of the European and national policies legislations strategies and codes and standards which impact the deployment of hydrogen technologies and infrastructures. The EHO database covers a total of 29 EU policies and legislations that directly or indirectly affect the development and deployment of hydrogen technologies. To achieve its net zero ambitions the EU started with cross-cutting strategies such as the EU Green Deal and the EU Hydrogen Strategy setting forward roadmaps and targets that are to be achieved in the near future. As a next step the EU has developed legislations such as those bundled in the Fit for 55 package to meet the targets they have put forward. The implemented legislations including funding vehicles and initiatives have an impact on the whole value chain of hydrogen including production transport storage and distribution and end-uses. At national level as of July 2023 63% of the European countries have successfully published their national strategies in the hydrogen sector while 6% of the countries are currently in the draft stage. Several European countries have strategically incorporated quantitative indicators within their national strategies outlining their targets and estimates across the hydrogen value chain. This deliberate approach reflects a commitment to providing clear and measurable goals within their hydrogen strategies. A target often used in the national strategies is on electrolyser capacity as an effort to enhance the domestic renewable hydrogen production. Germany took the lead with an ambitious goal of achieving 10 GW by 2030 followed by France (6.5 GW) and Denmark (4 - 6 GW). Other targets that some of the countries use in their strategies are on the number of hydrogen refuelling stations fuel cell electric vehicles and total (renewable) hydrogen demand. A few countries also have targets on renewable hydrogen uptake in industry and hydrogen injection limit in the transmission grid. To monitor the policies and legislation that are adopted on a national level across the hydrogen value chain a survey was launched with national experts which was validated by Hydrogen Europe. In total 28 European countries have participated to the survey. On production the survey revealed that 61% of country specialists report that their country provides support for capital expenditure (CAPEX) in the development of renewable or low-carbon hydrogen production plants. Moreover 7 countries also provide support for operational expenditure (OPEX). Furthermore 8 countries have instituted official 6 permitting guidelines for hydrogen production projects while 5 countries have enacted a legal act or established an agency serving as a single point of contact for hydrogen project developers. For transmission only two countries reported to provide support schemes for hydrogen injection. Several countries have policies in place that clearly define the hydrogen limit in their transmission grid for now and in the future ranging from 0.02% up to 15% while a few countries define within their policies the operation of hydrogen storage facilities. On end-use the majority of countries totalling 71% reported to have implemented support schemes aimed at promoting the adoption of hydrogen in the mobility sector. Purchase subsidies stand out as the predominant form of support for fuel cell electric vehicles (FCEVs) with implementation observed in 17 countries. In the context of support schemes for stationary fuel applications for heating or power generation only two countries have adopted such measures. A slightly larger group of four countries do provide support for the deployment of residential and commercial heating systems utilizing hydrogen. For hydrogen end-use in industry a total of 9 countries reported to provide support schemes with a major focus on ammonia production (8) and the chemicals industry (7). On the topic of technology manufacturing 7 countries have reported to have support schemes of which grants emerge as the mainly used method (4). Exploring the latest advancements into European codes and standards relevant to the deployment of hydrogen technologies and infrastructures a total of 11 standards have been revised and developed between January 2022 and September 2023. This includes standards covering the following areas: 6 for fuel cell technologies 2 for gas cylinders 2 for road vehicles and 1 for hydrogen refuelling. Moreover 5 standards were published since September 2023 which will be added to the EHO database in its next update. This includes ISO/TS 19870:2023 which sets a methodology for determining the greenhouse gas emissions associated with the production conditioning and transport of hydrogen to consumption gate. This landmark standard which was unveiled at COP28 aims to act as a foundation for harmonization safety interoperability and sustainability across the hydrogen value chain.
Study on Hydrogen in Ports and Industrial Coastal Areas - Report 1
Jan 2023
Publication
The study feeds into the work of the Global Hydrogen Ports Coalition launched at the latest Clean Energy Ministerial (CEM12). This important international initiative brings together ports from around the world to work together on hydrogen technologies. The planned study will be a comprehensive assessment of the hydrogen demand in ports and industrial coastal areas enabling the creation of a 'European Hydrogen Ports Roadmap'. It will also feature clear economic forecasts based on a variety of business models for the transition to renewable hydrogen in ports while presenting new case studies and project concepts. “The objective is to provide new directions for research and innovation guidance for regulation codes and standards and proposals on policy and regulation. The forthcoming study will also help create impetus for stakeholders to come together and take a long term perspective on the hydrogen transition in ports. Finally the study will be a centralized resource It will form a Europe wide hydrogen ports ' when combined with roadmaps and other materials created by individual ports.
2021 Hydrogen Supply and Demand
Sep 2021
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to track changes in the structure of hydrogen supply capacity and demand in Europe. This report is mainly focused on presenting the current landscape that will allow for future year-on-year comparisons to assess the progress Europe is making with regards to deployment of clean hydrogen production capacity as well as development of demand for clean hydrogen from emerging new hydrogen applications in industry or mobility sectors. Scope: The following report contains data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2019. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.5% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
Hydrogen, the First Element Podcast - Episode 4: Reskill to Repower - Preparing the Hydrogen Workforce
Dec 2022
Publication
During her State of the Union Address the President of the European Commission Ursula Von der Leyen defined 2023 as the "European Year of Skills" highlighting the urgency to overcome the shortage of skilled workforce in Europe a challenge that affects the hydrogen sector as well. The rapid development of the European Hydrogen Value Chain over the coming years is expected to generate approximately 1 million highly skilled jobs by 2030 and up to 5.4 million by 2050. In the fourth episode titled "Reskill to Repower: Preparing the Hydrogen workforce" our Chief Technology & Market Officer Stephen Jackson discusses with Massimo Valsania VP of Engineering at EthosEnergy and Co-chair of Hydrogen Europe Skills Working Group. Starting off with Massimo's professional background and his current role in our association the two speakers discussed the skills needed in the hydrogen economy and the policies that should be put in place to attract new generations.
2021 Standards Report
Jul 2021
Publication
Purpose: The standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. https://www.fchobservatory.eu/observatory/Policy-and-RCS/Standards Scope: This report presents the developments in European and international standards for the year 2020.Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2020; on a European level many standards are still in the process of being drafted. In 2020 12 new standards have been published mainly on the subject of fuel cell technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. Previous Reports The first report was published in September 2020. This report is the 2nd Annual report.
Hydrogen for the De-carbonization of the Resources and Energy Intensive Industries (REIIs)
Aug 2022
Publication
This study deals with the use of hydrogen for the de-carbonization of the Resources and Energy Intensive Industries (REIIs) and gives a specific insight of the situation of the steel-making industry. The growing use of hydrogen in our economy is synonym for an equal increase in electricity consumption. This results from the fact that the current most promising technologies of H2 production is water electrolysis. For this purpose the EU hydrogen strategy foresees a progressive ramp up of H2 production capacities. But bottlenecks (especially regarding energy needed for electrolysers) may occur. Capacities should reach 40 GW (around 10 Mt/y) by the end of 2030. The steel-making industry relies heavily on H2 to decarbonise its process (through direct iron ore reduction). Our study analyses the conditions under which this new process will be able to compete with both European and offshore existing carbonised assets (i.e. blast furnaces). It emphasises the need for integrated and consistent policies from carbon prices to the carbon border adjustment mechanism through carbon contracts for differences but also highlightsthat a better regulation of electricity prices should not be neglected.
Energy and Economic Costs of Chemical Storage
May 2020
Publication
The necessity of neutralizing the increase of the temperature of the atmosphere by the reduction of greenhouse gas emissions in particular carbon dioxide (CO2) as well as replacing fossil fuels leads to a necessary energy transition that is already happening. This energy transition requires the deployment of renewable energies that will replace gradually the fossil fuels. As the renewable energy share increases energy storage will become key to avoid curtailment or polluting back-up systems. This paper considers a chemical storage process based on the use of electricity to produce hydrogen by electrolysis of water. The obtained hydrogen (H2) can then be stored directly or further converted into methane (CH4 from methanation if CO2 is available e.g. from a carbon capture facility) methanol (CH3OH again if CO2 is available) and/or ammonia (NH3 by an electrochemical process). These different fuels can be stored in liquid or gaseous forms and therefore with different energy densities depending on their physical and chemical nature. This work aims at evaluating the energy and the economic costs of the production storage and transport of these different fuels derived from renewable electricity sources. This applied study on chemical storage underlines the advantages and disadvantages of each fuel in the frame of the energy transition.
Fly the Green Deal: Europe's Vision for Sustainable Aviation
Jul 2022
Publication
Europe’s aviation sector continues its resilient and pioneering spirit as it leads the world’s transport system into its new era of great transformation. Surviving the pandemic it is adapting rapidly to satisfy the rising demand for competitive air mobility services while managing a scarcity of resources and embracing the new challenges of climate change and energy transition. Facilitated by ACARE the European Commission its Member States aviation research organisations design and manufacturing industries airlines airports and aviation energy and service providers have all joined together to envision a synchronized transformation path that will ensure that Europe can lead the world towards a climate neutral citizen centric and competitive air mobility system. “Fly the Green Deal” is Europe’s Vision for Sustainable Aviation. It describes the actions and actors necessary towards aviation’s three main strategic goals. It details three time horizons and defines as well the requirement for a proactive and synchronised implementation framework facilitated by the European Commission and EU Member States that includes both the initiating instruments (policies regulations and incentives) and a system of measuring and impact monitoring to ensure the goals are achieved.
Hydrogen-powered Aviation: A Fact-based Study of Hydrogen Technology, Economics, and Climate Impact by 2050
Jul 2020
Publication
This report assesses the potential of hydrogen (H2) propulsion to reduce aviation’s climate impact. To reduce climate impact the industry will have to introduce further levers such as radically new technology significantly scale sustainable aviation fuels (SAF) such as synthetic fuel (synfuel) temporarily rely on offsets in large quantities or rely on a combination thereof. H2 propulsion is one such technology and this report assesses its potential in aviation. Developed with input from leading companies and research institutes it projects the technological development of H2 combustion and fuel cell-powered propulsion evaluates their technical and economic feasibility compares them to synfuel and considers implications on aircraft design airport infrastructure and fuel supply chains.
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
True Cost of Solar Hydrogen
Sep 2021
Publication
Green hydrogen will be an essential part of the future 100% sustainable energy and industry system. Up to one-third of the required solar and wind electricity would eventually be used for water electrolysis to produce hydrogen increasing the cumulative electrolyzer capacity to about 17 TWel by 2050. The key method applied in this research is a learning curve approach for the key technologies i.e. solar photovoltaics (PV) and water electrolyzers and levelized cost of hydrogen (LCOH). Sensitivities for the hydrogen demand and various input parameters are considered. Electrolyzer capital expenditure (CAPEX) for a large utility-scale system is expected to decrease from the current 400 €/kWel to 240 €/kWel by 2030 and to 80 €/kWel by 2050. With the continuing solar PV cost decrease this will lead to an LCOH decrease from the current 31–81 €/ MWhH2LHV (1.0–2.7 €/kgH2) to 20–54 €/MWhH2LHV (0.7–1.8 €/kgH2) by 2030 and 10–27 €/MWhH2LHV (0.3–0.9 €/kgH2) by 2050 depending on the location. The share of PV electricity cost in the LCOH will increase from the current 63% to 74% by 2050.
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
Jan 2020
Publication
In this present work simulations of 20 kW furnace were carried out with hydrogenenriched methane mixtures to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular for a typical coaxial injector configuration an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process consequently helping the transition to flameless conditions. CO2 and H2O are typical products of hydrogen generation processes therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.
Scientific Assessment in Support of the Materials Roadmap enabling Low Carbon Energy Technologies Hydrogen and Fuel Cells
Apr 2014
Publication
A group experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European Strategic Energy Technology Plan. The report summarises the results including key targets identified for medium term (2020/2030) and long term (2050) timescales.
Roadmap Towards Zero Emissions, BEVs and FCEVs
Oct 2021
Publication
A “combined world” of fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) will create a greener transportation sector faster and cheaper than one of the solutions alone. Hydrogen Council with analytical support from McKinsey and Company published a report that highlights the complementary roles of FCEVs and BEVs in a decarbonised transportation sector.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
The analysis found that each solution has comparable systemic efficiencies and similar CO2 life cycle intensity. From the vehicle user perspective FCEVs and BEVs will provide the flexibility and convenience to meet their specific context of use and geographic location. Additionally the costs of two supporting infrastructure for FCEVs and BEVs is cheaper than one infrastructure network primarily due to the reduced peak loads and avoidance of costly upgrades on the electricity grid. The report’s messages were developed in dialogue with the Observatory Group which consisted of representatives of government agencies and academia as well as associations and companies active in sectors like regenerative electricity generation electricity grid equipment manufacturing electric vehicle charging fleet management.
The paper can be found on their website.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Renewable Heating and Cooling Pathways - Towards Full Decarbonisation by 2050
Feb 2023
Publication
With the adoption of the EU Climate Law in 2021 the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency renewable energies and greenhouse gas emissions in the Fit for 55 package. The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU and the sector is largely based on fossil fuels. In 2021 the share of renewable energies in H&C reached 23%.
No more items...