Austria
Natural Iron Ores for Large-scale Thermochemical Hydrogen and Energy Storage
Jun 2022
Publication
A stable energy supply will require balancing the fluctuations of renewable energy generation due to the transition to renewable energy sources. Intraday and seasonal storage systems are often limited to local geographical or infrastructural circumstances. This study experimentally verifies the application of inexpensive and abundant natural iron ores for energy storage with combined hydrogen and heat release. The incorporated iron oxides are reduced with hydrogen from electrolysis to store energy in chemically bonded form. The on–demand reoxidation releases either pure hydrogen or high-temperature heat as valuable products. Natural iron ores as storage material are beneficial as the specific costs are lower by an order of magnitude compared to synthetic iron oxide-based materials. Suitable iron ores were tested in TG analysis and in a 1 kW fixed-bed reactor. Siderite a carbonate iron ore was verified as promising candidate as it shows significantly lower reaction temperatures and twice the storage capacity over other commercial iron ores such as ilmenite. The specific storage costs are as low as 80–150 $ per MWh hydrogen stored based on the experimental in-situ tests. The experimentally determined volumetric energy storage capacity for the bulk material was 1.7 and 1.8 MWh m− 3 for hydrogen and heat release respectively. The raw siderite ore was stable for over 50 consecutive cycles at operating temperatures of 500–600 ◦C in in-situ lifetime tests. The combination of high abundance low price and reasonable capacity can thus result in very low specific energy storage costs. The study proofs that suitable natural iron ores are an interesting economic solution for large-scale and seasonal energy storage systems.
Investigation of Pre-cooling Strategies for Heavy-duty Hydrogen Refuelling
Mar 2024
Publication
Green hydrogen presents a promising solution for transitioning from fossil fuels to a clean energy future particularly with the application of fuel cell electric vehicles (FCEVs). However the hydrogen refuelling process for FCEVs requires extensive pre-cooling to achieve fast filling times. This study presents experiments and simulations of a hydrogen refuelling station equipped with an adaptable cold-fill unit aiming to maximize fuelling efficiencies. For this purpose we developed and experimentally validated simulation models for a hydrogen tank and an aluminium block heat exchanger. Different pre-cooling parameters affect the final tank temperatures during the parallel filling of three 350 L type IV tanks. The results indicate significant potential for optimizing the required cooling energy with achievable savings of over 50 % depending on the pre-cooling strategy. The optimized pre-cooling strategies and energy savings aid in advancing the refuelling process for FCEVs effectively contributing to the transition to clean energy.
The Economics and the Environmental Benignity of Different Colors of Hydrogen
Feb 2022
Publication
Due to the increasing greenhouse gas emissions as well as due to the rapidly increasing use of renewable energy sources in the electricity generation over the last years interest in hydrogen is rising again. Hydrogen can be used as a storage for renewable energy balancing the whole energy systems and contributing to the decarbonization of the energy system especially of the industry and the transport sector. The major objective of this paper is to discuss various ways of hydrogen production depending on the primary energy sources used. Moreover the economic and environmental performance of three major hydrogen colors as well as major barriers for faster deployment in fuel cell vehicles are analyzed. The major conclusion is that the full environmental benefits of hydrogen use are highly dependent on the hydrogen production methods and primary sources used. Only green hydrogen with electricity from wind PV and hydro has truly low emissions. All other sources like blue hydrogen with CCUS or electrolysis using the electricity grid have substantially higher emissions coming close to grey hydrogen production. Another conclusion is that it is important to introduce an international market for hydrogen to lower costs and to produce hydrogen where conditions are best. Finally the major open question remaining is whether e including all external costs of all energy carriers hydrogen of any color may become economically competitive in any sector of the energy system. The future success of hydrogen is very dependent on technological development and resulting cost reductions as well as on future priorities and the corresponding policy framework. The policy framework should support the shift from grey to green hydrogen.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Assessment and Recommendations for a Fossil Free Future for Track Work Machinery
Oct 2021
Publication
Current railway track work machinery is mainly operated with diesel fuel. As a result track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results together with a calculation tool show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between enhancements in battery technology are necessary and desirable for the coming years.
Prospects and Impediments for Hydrogen Fuel Cell Buses
Jun 2021
Publication
The number of demonstration projects with fuel cell buses has been increasing worldwide. The goal of this paper is to analyse prospects and barriers for fuel cell buses focusing on their economic- technical- and environmental performance. Our results show that the prices of fuel cell buses although decreasing over time are still about 40% higher than those of diesel buses. With the looming ban of diesel vehicles and current limitations of battery electric vehicles fuel cell buses could become a viable alternative in the mid-to long-term. With the requirements for a better integration of renewable energy sources in the transport system interest in hydrogen is rising. Hydrogen produced from renewables used in fuel cell buses has the potential to save about 93% of CO2 emissions in comparison to diesel buses. Yet from environmental point-of-view it has to be ensured that hydrogen is produced from renewables. Currently the major barrier for a faster penetration of fuel cell buses are their high purchase prices which could be significantly reduced with the increasing number of buses through technological learning. The final conclusion is that a tougher transport policy framework is needed which fully reflects the environmental impact of different buses used.
Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking
May 2020
Publication
The European steel industry aims at a CO2 reduction of 80–95% by 2050 ensuring that Europe will meet the requirements of the Paris Agreement. As the reduction potentials of the current steelmaking routes are low the transfer toward breakthrough-technologies is essential to reach these goals. Hydrogen-based steelmaking is one approach to realize CO2-lean steelmaking. Therefore the natural gas (NG)-based direct reduction (DR) acts as a basis for the first step of this transition. The high flexibility of this route allows the gradual addition of hydrogen and in a long-term view runs the process with pure hydrogen. Model-based calculations are performed to assess the possibilities for injecting hydrogen. Therefore NG- and hydrogen-based DR models are developed to create new process know-how and enable an evaluation of these processes in terms of energy demand CO2-reduction potentials and so on. The examinations show that the hydrogen-based route offers a huge potential for green steelmaking which is strongly depending on the carbon footprint of the electricity used for the production of hydrogen. Only if the carbon intensity is less than about 120 g CO2 kWh1 the hydrogen-based process emits less CO2 than the NG-based DR process.
Economic and Environmental Assessment of Different Hydrogen Production and Transportation Modes
Apr 2024
Publication
Hydrogen is widely considered as the energy carrier of the future but the rather high energy losses for its production are often neglected. The major current hydrogen production technology is steam methane reforming of fossil gas but there is a growing interest in producing hydrogen sustainably from water using electrolysis. This article examines four main hydrogen production chains and two transportation options (pipeline and ship) from North Africa to Europe analyzing the costs and environmental impacts of each. The core objective is to determine the most promising hydrogen provision method and location from an economic and ecological point of view including the required transport. An important finding of this analysis is that both options importing green hydrogen and producing it in Europe may be relevant for a decarbonized energy system. The emphasis should be on green hydrogen to achieve carbon emission reductions. If blue hydrogen is also considered attention should be paid to the often-neglected methane emissions upstream.
Linking Geological and Infrastructural Requirements for Large-scale Underground Hydrogen Storage in Germany
Jun 2023
Publication
Hydrogen storage might be key to the success of the hydrogen economy and hence the energy transition in Germany. One option for cost-effective storage of large quantities of hydrogen is the geological subsurface. However previous experience with underground hydrogen storage is restricted to salt caverns which are limited in size and space. In contrast pore storage facilities in aquifers -and/or depleted hydrocarbon reservoirs- could play a vital role in meeting base load needs due to their wide availability and large storage capacity but experiences are limited to past operations with hydrogen-bearing town gas. To overcome this barrier here we investigate hydrogen storage in porous storage systems in a two-step process: 1) First we investigate positive and cautionary indicators for safe operations of hydrogen storage in pore storage systems. 2) Second we estimate hydrogen storage capacities of pore storage systems in (current and decommissioned) underground natural gas storage systems and saline aquifers. Our systematic review highlights that optimal storage conditions in terms of energy content and hydrogen quality are found in sandstone reservoirs in absence of carbonate and iron bearing accessory minerals at a depth of approx. 1100 m and a temperature of at least 40°C. Porosity and permeability of the reservoir formation should be at least 20% and 5 × 10−13 m2 (~500 mD) respectively. In addition the pH of the brine should fall below 6 and the salinity should exceed 100 mg/L. Based on these estimates the total hydrogen storage capacity in underground natural gas storages is estimated to be up to 8 billion cubic meters or (0.72 Mt at STP) corresponding to 29 TWh of energy equivalent of hydrogen. Saline aquifers may offer additional storage capacities of 81.6–691.8 Mt of hydrogen which amounts to 3.2 to 27.3 PWh of energy equivalent of hydrogen the majority of which is located in the North German basin. Pore storage systems could therefore become a crucial element of the future German hydrogen infrastructure especially in regions with large industrial hydrogen (storage) demand and likely hydrogen imports via pipelines and ships.
On the Future Relevance of Green Hydrogen in Europe
Jan 2024
Publication
Hydrogen is among the energy carriers which are most often considered for bringing about a sustainable energy system. Yet so far hydrogen has not delivered as an energy carrier. The core objective of this paper is to provide a comprehensive analysis of the state-of-the-art and the future prospects of green hydrogen in the European energy system from economic energetic and CO2 emissions point-of-view. The analysis shows that there are some increasing opportunities for hydrogen use in industry and in the transport sector when electrification is not possible or is too expensive as well as a storage in the European electricity system. However a hydrogen-based energy system will remain a vision at least over the next decades. The major reason for this is the unfavorable economics mostly due to high investment costs in the whole supply chain. In addition the overall efficiencies in the hydrogen chains are moderate in general. The full environmental benignity of hydrogen as an energy carrier is only provided when renewable energy sources are used for hydrogen production. However in Europe the potentials for green hydrogen are very limited due to the insufficient expansion of renewable electricity generation. For this reason many European countries are considering options for green hydrogen import. The future of hydrogen is highly dependent on the supporting policy framework. To reduce the risk in the investment in hydrogen infrastructure as well as to justify the promotion of green hydrogen it is very important that Europe works out a very clear and realistic long-term implementation strategy.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Oct 2023
Publication
In light of the growing interest in hydrogen as an energy carrier and reducing agent various industries including the iron and steel sector are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries the production of hydrogen must be significantly expanded and further developed. However current hydrogen production heavily relies on fossil-fuel-based methods resulting in a considerable environmental burden with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4 ) into hydrogen and solid carbon significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence increasing methane conversion from 35% at 1150 ◦C to 74% at 1250 ◦C. In contrast the effect of the methane flow rate remains relatively small in the investigated range. Moreover an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
A Review on Metal Hydride Materials for Hydrogen Storage
Jul 2023
Publication
To achieve the shift to renewable energies efficient energy storage is of the upmost importance. Hydrogen as a chemical energy storage represents a promising technology due to its high gravimetric energy density. However the most efficient form of hydrogen storage still remains an open question. Absorption-based storage of hydrogen in metal hydrides offers high volumetric energy densities as well as safety advantages. In this work technical economic and environmental aspects of different metal hydride materials are investigated. An overview of the material properties production methods as well as possibilities for enhancement of properties are presented. Furthermore impacts on material costs abundance of raw materials and dependency on imports are discussed. Advantages and disadvantages of selected materials are derived and may serve as a decision basis for material selection based on application. Further research on enhancement of material properties as well as on the system level is required for widespread application of metal hydrides.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
Repurposing Fischer-Tropsch and Natural Gas as Bridging Technologies for the Energy Revolution
Jun 2022
Publication
Immediate and widespread changes in energy generation and use are critical to safeguard our future on this planet. However while the necessity of renewable electricity generation is clear the aviation transport and mobility chemical and material sectors are challenging to fully electrify. The age-old Fischer-Tropsch process and natural gas industry could be the bridging solution needed to accelerate the energy revolution in these sectors – temporarily powering obsolete vehicles acting as renewable energy’s battery supporting expansion of hydrogen fuel cell technologies and the agricultural and waste sectors as they struggle to keep up with a full switch to biofuels. Natural gas can be converted into hydrogen synthetic natural gas or heat during periods of low electricity demand and converted back to electricity again when needed. Moving methane through existing networks and converting it to hydrogen on-site at tanking stations also overcomes hydrogen distribution storage problems and infrastructure deficiencies. Useful co-products include carbon nanotubes a valuable engineering material that offset emissions in the carbon nanotube and black industries. Finally excess carbon can be converted back into syngas if desired. This flexibility and the compatibility of natural gas with both existing and future technologies provides a unique opportunity to rapidly decarbonise sectors struggling with complex requirements.
Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane
Jun 2022
Publication
This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas coke oven gas and basic oxygen furnace gas) which differ on the amount of used off-gases as well as on the end product (methane and/or methanol) are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs improved electrolyzer efficiency and lower electricity prices) is necessary to establish this technology in the future.
The Influence of Hydrogen Sulfide Contaminations on Hydrogen Production in Chemical Looping Processes
Aug 2021
Publication
Chemical looping with iron-based oxygen carriers enables the production of hydrogen from various fossil and biogenic primary energy sources. In applications with real producer gases such as biogas or gasified biomass hydrogen sulfide represents one of the most challenging contaminants. The impact of H2S on the reactivity of a Fe2O3/Al2O3 oxygen carrier material in chemical looping hydrogen production was investigated in the present work. First potential sulfur deactivation mechanisms are discussed in detail on the basis of thermodynamic data. Afterwards an experimental study in a fixed-bed reactor system gave experimental evidence on the fate of sulfur in chemical looping hydrogen systems. The chemisorption of hydrogen sulfide (H2S) was identified as the main cause for the accumulative adsorption of H2S in the reduction phase and was confirmed by ex-situ ICP-EOS analysis. In the subsequent steam oxidation step significant quantities of H2S were released resulting in an undesirable contamination of the hydrogen product gas. The reason was found as weakened sulfur bonds through increasing reactor temperatures caused by the exothermic oxidation reactions. In additional air oxidation steps no further contaminants as sulfur dioxide were identified. A profound interpretation was achieved through the fulfillment of the overall sulfur mass balance within a mean deviation of 3.7%. Quantitative investigations showed that the hydrogen consumption decreased by 12% throughout the reduction phase in the event of 100 ppm H2S in the feed gas
Air Mass Flow and Pressure Optimisation of a PEM Fuel Cell Range Extender System
Aug 2022
Publication
In order to eliminate the local CO2 emissions from vehicles and to combat the associated climate change the classic internal combustion engine can be replaced by an electric motor. The two most advantageous variants for the necessary electrical energy storage in the vehicle are currently the purely electrochemical storage in batteries and the chemical storage in hydrogen with subsequent conversion into electrical energy by means of a fuel cell stack. The two variants can also be combined in a battery electric vehicle with a fuel cell range extender so that the vehicle can be refuelled either purely electrically or using hydrogen. The air compressor a key component of a PEM fuel cell system can be operated at different air excess and pressure ratios which influence the stack as well as the system efficiency. To asses the steady state behaviour of a PEM fuel cell range extender system a system test bench utilising a commercially available 30 kW stack (96 cells 409 cm2 cell area) was developed. The influences of the operating parameters (air excess ratio 1.3 to 1.7 stack temperature 20 °C–60 °C air compressor pressure ratio up to 1.67 load point 122 mA/cm2 to 978 mA/cm2) on the fuel cell stack voltage level (constant ambient relative humidity of 45%) and the corresponding system efficiency were measured by utilising current voltage mass flow temperature and pressure sensors. A fuel cell stack model was presented which correlates closely with the experimental data (0.861% relative error). The air supply components were modelled utilising a surface fit. Subsequently the system efficiency of the validated model was optimised by varying the air mass flow and air pressure. It is shown that higher air pressures and lower air excess ratios increase the system efficiency at high loads. The maximum achieved system efficiency is 55.21% at the lowest continuous load point and 43.74% at the highest continuous load point. Future work can utilise the test bench or the validated model for component design studies to further improve the system efficiency.
No more items...