Australia
Towards a Large-Scale Hydrogen Industry for Australia
Oct 2020
Publication
As nations around the world seek to reduce carbon dioxide emissions in order to mitigate climate change risks there has been a resurgence of interest in the use of hydrogen as a zero-emissions energy carrier. Hydrogen can be produced from diverse feedstocks via a range of low-emissions pathways and has broad potential in the process of decarbonization across the energy transport and industrial sectors.<br/>With an abundance of both renewable and fossil fuel energy resources a comparatively low national energy demand and excellent existing regional resource trading links Australia is well positioned to pursue industrial-scale hydrogen production for both domestic and export purposes. In this paper we present an overview of the progress at the government industry and research levels currently undertaken to enable a large-scale hydrogen industry for Australia.
Computational Intelligence Approach for Modeling Hydrogen Production: A Review
Mar 2018
Publication
Hydrogen is a clean energy source with a relatively low pollution footprint. However hydrogen does not exist in nature as a separate element but only in compound forms. Hydrogen is produced through a process that dissociates it from its compounds. Several methods are used for hydrogen production which first of all differ in the energy used in this process. Investigating the viability and exact applicability of a method in a specific context requires accurate knowledge of the parameters involved in the method and the interaction between these parameters. This can be done using top-down models relying on complex mathematically driven equations. However with the raise of computational intelligence (CI) and machine learning techniques researchers in hydrology have increasingly been using these methods for this complex task and report promising results. The contribution of this study is to investigate the state of the art CI methods employed in hydrogen production and to identify the CI method(s) that perform better in the prediction assessment and optimization tasks related to different types of Hydrogen production methods. The resulting analysis provides in-depth insight into the different hydrogen production methods modeling technique and the obtained results from various scenarios integrating them within the framework of a common discussion and evaluation paper. The identified methods were benchmarked by a qualitative analysis of the accuracy of CI in modeling hydrogen production providing extensive overview of its usage to empower renewable energy utilization.
A Review of Hydrogen as a Fuel in Internal Combustion Engines
Sep 2021
Publication
The demand for fossil fuels is increasing because of globalization and rising energy demands. As a result many nations are exploring alternative energy sources and hydrogen is an efficient and practical alternative fuel. In the transportation industry the development of hydrogen-powered cars aims to maximize fuel efficiency and significantly reduce exhaust gas emission and concentration. The impact of using hydrogen as a supplementary fuel for spark ignition (SI) and compression ignition (CI) engines on engine performance and gas emissions was investigated in this study. By adding hydrogen as a fuel in internal combustion engines the torque power and brake thermal efficiency of the engines decrease while their brake-specific fuel consumption increase. This study suggests that using hydrogen will reduce the emissions of CO UHC CO2 and soot; however NOx emission is expected to increase. Due to the reduction of environmental pollutants for most engines and the related environmental benefits hydrogen fuel is a clean and sustainable energy source and its use should be expanded.
Stronger Together: Multi-annual Variability of Hydrogen Production Supported by Wind Power in Sweden
Mar 2021
Publication
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation which are both associated with sustainability concerns. In this work we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Decarbonising UK Transport: Implications for Electricity Generation, Land Use and Policy
Dec 2022
Publication
To ensure the UK’s net zero targets are met the transition from conventionally fueled transport to low emission alternatives is necessary. The impact from increased decarbonised electricity generation on ecosystem services (ES) and natural capital (NC) are not currently quantified with decarbonisation required to minimise impacts from climate change. This study aims to project the future electric and hydrogen energy demand between 2020 and 2050 for car bus and train to better understand the land/sea area that would be required to support energy generation. In this work predictions of the geospatial impact of renewable energy (onshore/offshore wind and solar) nuclear and fossil fuels on ES and NC were made considering generation mix number of generation installations and energy density. Results show that electric transport will require ~136599 GWh for all vehicle types analysed in 2050 much less than hydrogen transport at ~425532 GWh. We estimate that to power electric transport at least 1515 km2 will be required for solar 1672 km2 for wind and 5 km2 for nuclear. Hydrogen approximately doubles this requirement. Results provide an approximation of the future demands from the transport sector on land and sea area use indicating that a combined electric and hydrogen network will be needed to accommodate a range of socio-economic requirements. While robust assessments of ES and NC impacts are critical in future policies and planning significant reductions in energy demands through a modal shift to (low emission) public transport will be most effective in ensuring a sustainable transport future.
EU Carbon Diplomacy: Assessing Hydrogen Security and Policy Impact in Australia and Germany
Dec 2021
Publication
Hydrogen is fast becoming a new international “super fuel” to accelerate global climate change ambitions. This paper has two inter-weaving themes. Contextually it focuses on the potential impact of the EU’s new Carbon Border Adjustment Mechanism (CBAM) on fossil fuel-generated as opposed to green hydrogen imports. The CBAM as a transnational carbon adjustment mechanism has the potential to impact international trade in energy. It seeks both a level playing field between imports and EU internal markets (subject to ambitious EU climate change policies) and to encourage emissions reduction laggards through its “carbon diplomacy”. Countries without a price on carbon will be charged for embodied carbon in their supply chains when they export to the EU. Empirically we focus on two hydrogen export/import case studies: Australia as a non-EU state with ambitions to export hydrogen and Germany as an EU Member State reliant on energy imports. Energy security is central to energy trade debates but needs to be conceptualized beyond supply and demand economics to include geopolitics just transitions and the impacts of border carbon taxes and EU carbon diplomacy. Accordingly we apply and further develop a seven-dimension energy security-justice framework to the examples of brown blue and green hydrogen export/import hydrogen operations with varying carbon-intensity supply chains in Australia and Germany. Applying the framework we identify potential impact—risks and opportunities—associated with identified brown blue and green hydrogen export/import projects in the two countries. This research contributes to the emerging fields of international hydrogen trade supply chains and international carbon diplomacy and develops a potentially useful seven-dimension energy security-justice framework for energy researchers and policy analysts.
Shipping the Sunshine: An Open-source Model for Costing Renewable Hydrogen Transport from Australia
Apr 2022
Publication
Green hydrogen (H2) is emerging as a future clean energy carrier. While there exists significant analysis on global renewable (and non-renewable) hydrogen generation costs analysis of its transportation costs irrespective of production method is still limited. Complexities include the different forms in which hydrogen can be transported the limited experience to date in shipping some of these carrier forms the trade routes potentially involved and the possible use of different shipping fuels. Herein we present an open-source model developed to assist stakeholders in assessing the costs of shipping various forms of hydrogen over different routes. It includes hydrogen transport in the forms of liquid hydrogen (LH2) ammonia liquified natural gas (LNG) methanol and liquid organic hydrogen carriers (LOHCs). It considers both fixed and variable costs including port fees possible canal usage charges fuel costs ship capital and operating costs boil-off losses and possible environmental taxes among many others. The model is applied to the Rotterdam-Australia route as a case study revealing ammonia ($0.56/kgH2) and methanol ($0.68/kgH2) as the least expensive hydrogen derivatives to transport followed by liquified natural gas ($1.07/kgH2) liquid organic hydrogen carriers ($1.37/kgH2) and liquid hydrogen ($2.09/kgH2). While reducing the transportation distance led to lower shipping costs we note that the merit order of assumed underlying shipping costs remain unchanged. We also explore the impact of using hydrogen (or the hydrogen carrier) as a low/zero carbon emission fuel for the ships which led to lowering of costs for liquified natural gas ($0.88/kgH2) a similar cost for liquid hydrogen ($2.19/kgH2) and significant increases for the remainder. Given our model is open-sourced it can be adapted globally and updated to match the changing cost dynamics of the emerging green hydrogen market.
Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies
Jun 2022
Publication
Currently hydrogen energy is the most promising energy vector while gasification is one of the major routes for its production. However gasification suffers from various issues including slower carbon conversion poor syngas quality lower heating value and higher emissions. Multiple factors affect gasification performance such as the selection of gasifiers feedstock’s physicochemical properties and operating conditions. In this review the status of gasification key gasifier technologies and the effect of solid-fuel (i.e. coal biomass and MSW) properties on gasification performance are reviewed critically. Based on the current review the co-gasification of coal biomass and solid waste along with a partial utilisation of CO2 as a reactant are suggested. Furthermore a technological breakthrough in carbon capture and sequestration is needed to make it industrially viable
Integrating a Top-Gas Recycling and CO2 Electrolysis Process for H2-Rich Gas Injection and Reduce CO2 Emissions from an Ironmaking Blast Furnace
Mar 2022
Publication
Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2–CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9–10.9 m3/tHM of H2 saved 1 kg/tHM coke rate depending on injection position. Compared with the traditional blast furnace injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.
Safety Assessment of Hydrogen Jet Fire Scenarios within Semi-Confined Spaces
Jan 2023
Publication
Hydrogen fuel cell vehicle (HFCV) technology poses great promise as an alternative to significantly reduce the environmental impact of the transport sector’s emissions. However hydrogen fuel cell technology is relatively new therefore confirmation of the reliability and safety analysis is still required particularly for fire scenarios within confined spaces such as tunnels. This study applied the computational fluid dynamics (CFD) simulations in conjunction with probabilistic calculation methods to determine the associated thermal risk of a hydrogen jet fire in a tunnel and its dependency on scenarios with different tunnel slopes longitudinal and transverse ventilation velocities and fire positions. A large-scale model of 102 m in which the effects of outlined parameter variations on the severity of the fire incident were analysed. It is found that both tunnel ventilation techniques and slope were critical for the effective ejection of accumulated heat. With ventilation playing a primary role in the ejection of heat and gas and slope ensuring the stability of the ejected heat probabilities of thermal burns were found to be reduced by up to approximately 35% with a strong suggestion of critical combinations to further reduce the dangers of hydrogen tunnel fires.
A Chicken and Egg Situation: Enhancing Emergency Service Workers' Knowledge of Hydrogen
Sep 2021
Publication
This paper reports on the results of interviews conducted with 21 representatives from emergency services organisations within Australia and New Zealand. With a relative emergent industry such as future fuels a chicken and egg situation does emerge with regards to how much training needs to be in place in advance of large-scale industry development or not. These respondents were employed in a variety of roles being directly involved in research and training of emerging technologies frontline operational managers and other senior roles across the emergency services sector. Participants' responses to a series of questions were able to provide insights into the state of knowledge and training requirements within their organisations in relation to hydrogen and other future fuels. The findings suggest that formal and informal processes currently exist to support the knowledge development and transferal around the adoption of hydrogen and other future fuels. From the interviews it became clear that there are a number of processes that have emerged from the experiences gained through the implementation of rooftop solar PV and battery storage that provide some background context for advancing future fuels information across the sector. Because safety is a critical component for securing a social licence to operate engagement and knowledge sharing with any representatives from across this sector will only help to build confidence in the industry. Similarly because interviewees were very keen to access information they expressed a clear willingness to learn more through more formalised relationships rather than an ad hoc information seeking that has been employed to date. The presentation will identify key recommendations and also highlight the importance of QR Codes in the emergency responder landscape. Implications for industry and policy makers are discussed.
Proton Exchange Membrane Hydrogen Fuel Cell as the Grid Connected Power Generator
Dec 2020
Publication
In this paper a proton exchange membrane fuel cell (PEMFC) is implemented as a grid-connected electrical generator that uses hydrogen gas as fuel and air as an oxidant to produce electricity through electrochemical reactions. Analysis demonstrated that the performance of the PEMFC greatly depends on the rate of fuel supply and air supply pressure. Critical fuel and air supply pressures of the PEMFC are analysed to test its feasibility for the grid connection. Air and fuel supply pressures are varied to observe the effects on the PEMFC characteristics efficiency fuel supply and air consumption over time. The PEMFC model is then implemented into an electrical power system with the aid of power electronics applications. Detailed mathematical modelling of the PEMFC is discussed with justification. The PEMFC functions as an electrical generator that is connected to the local grid through a power converter and a transformer. Modulation of the converter is controlled by means of a proportional-integral controller. The two-axis control methodology is applied to the current control of the system. The output voltage waveform and control actions of the controller on the current and frequency of the proposed system are plotted as well. Simulation results show that the PEMFC performs efficiently under certain air and fuel pressures and it can effectively supply electrical power to the grid.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Gas Transition: Renewable Hydrogen’s Future in Eastern Australia’s Energy Networks
Jul 2021
Publication
The energy transition for a net-zero future will require deep decarbonisation that hydrogen is uniquely positioned to facilitate. This technoeconomic study considers renewable hydrogen production transmission and storage for energy networks using the National Electricity Market (NEM) region of Eastern Australia as a case study. Plausible growth projections are developed to meet domestic demands for gas out to 2040 based on industry commitments and scalable technology deployment. Analysis using the discounted cash flow technique is performed to determine possible levelised cost figures for key processes out to 2050. Variables include geographic limitations growth rates and capacity factors to minimise abatement costs compared to business-as-usual natural gas forecasts. The study provides an optimistic outlook considering renewable power-to-X opportunities for blending replacement and gas-to-power to show viable pathways for the gas transition to green hydrogen. Blending is achievable with modest (3%) green premiums this decade and substitution for natural gas combustion in the long-term is likely to represent an abatement cost of AUD 18/tCO2-e including transmission and storage.
Sustainable Aviation—Hydrogen Is the Future
Jan 2022
Publication
As the global search for new methods to combat global warming and climate change continues renewable fuels and hydrogen have emerged as saviours for environmentally polluting industries such as aviation. Sustainable aviation is the goal of the aviation industry today. There is increasing interest in achieving carbon-neutral flight to combat global warming. Hydrogen has proven to be a suitable alternative fuel. It is abundant clean and produces no carbon emissions but only water after use which has the potential to cool the environment. This paper traces the historical growth and future of the aviation and aerospace industry. It examines how hydrogen can be used in the air and on the ground to lower the aviation industry’s impact on the environment. In addition while aircraft are an essential part of the aviation industry other support services add to the overall impact on the environment. Hydrogen can be used to fuel the energy needs of these services. However for hydrogen technology to be accepted and implemented other issues such as government policy education and employability must be addressed. Improvement in the performance and emissions of hydrogen as an alternative energy and fuel has grown in the last decade. However other issues such as the storage and cost and the entire value chain require significant work for hydrogen to be implemented. The international community’s alternative renewable energy and hydrogen roadmaps can provide a long-term blueprint for developing the alternative energy industry. This will inform the private and public sectors so that the industry can adjust its plan accordingly.
A Flexible Analytical Model for Operational Investigation of Solar Hydrogen Plants
Nov 2021
Publication
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants that not only models compatibility with the “plug-and-play” nature of many facilities but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries electrolysers and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system and accurate validation of the system behaviour when updated with real-time data. As a case study a solar hydrogen pilot plant consisting of a 60 kW Solar PV a 40 kW PEM electrolyser a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38e39% from solar DC energy to hydrogen energy produced (ii) an LPSP <2.6 104 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.
Sensing Hydrogen Seeps in the Subsurface for Natural Hydrogen Exploration
Jun 2022
Publication
The recent detection of natural hydrogen seeps in sedimentary basin settings has triggered significant interest in the exploration of this promising resource. If large economical resources exist and can be extracted from the sub-surface this would provide an opportunity for natural hydrogen to contribute to the non-carbon-based energy mix. The detection and exploration of hydrogen gas in the sub-surface is a significant challenge that requires costly drilling sophisticated instrumentation and reliable analytical/sampling methods. Here we propose the application of a commercial-based sensor that can be used to detect and monitor low levels of hydrogen gas emissions from geological environments. The sensitivity selectivity (K > 1000) and stability (<1 ppm/day) of the sensor was evaluated under various conditions to determine its suitability for geological field monitoring. Calibration tests showed that the hydrogen readings from the sensor were within ±20% of the expected values. We propose that chemical sensing is a simple and feasible method for understanding natural hydrogen seeps that emanate from geological systems and formations. However we recommend using this sensor as part of a complete geological survey that incorporates an understanding of the geology along with complementary techniques that provide information on the rock properties.
A Review of Port Decarbonisation Options: Identified Opportunities for Deploying Hydrogen Technologies
Apr 2024
Publication
The utilisation of hydrogen is being explored as a viable solution for reducing carbon emissions in port operations with potential applications in cargo handling transportation and shipping vessel operations. To comprehensively list the decarbonisation options in ports this study conducted a Systematic Literature Review to identify and then survey twelve highly cited review papers. Initially a typology approach was used to categorise the decarbonisation options by activities and technologies. Subsequently the study introduced a novel Port Energy Map to reveal the energy system pathways and their interconnections. Each pathway was then converted into a simpler linear sequence of activities shown as a Port Energy System Taxonomy which outlines the energy supply and energy-using activities. By utilising this taxonomy and map the study identified opportunities and research gaps for integrating hydrogen technologies into port energy systems which serves as a valuable tool for assessing port decarbonisation options.
Identifying Informed Beliefs about Hydrogen Technologies Across the Energy Supply Chain
Apr 2023
Publication
Developing a thriving hydrogen industry will depend on public and community support. Past research mainly focusing on the acceptance of hydrogen fuelling stations and cars suggests that people generally support hydrogen energy technology (HET). Few studies have however considered how people think about other components of the hydrogen supply chain (i.e. technologies required to make store transport and use hydrogen). Moreover there has been limited research investigating how people interpret and develop beliefs about HET after being presented with technical information. This paper attempts to address these research gaps by presenting the findings from four face-to-face focus group discussions conducted in Australia. The findings suggest that people have differing views about HET which depends on the type of technology and these views influence levels of support. The study also revealed concerns about a range of other factors that have yet to be considered in hydrogen acceptance research (e.g. perceived water use efficiency and indirect benefits). The findings highlight the value of qualitative research for identifying salient beliefs that shape attitudes towards HET and provide recommendations for future research and how to effectively communicate with the public and communities about an emerging hydrogen industry.
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Jul 2017
Publication
Photocatalytic water splitting which directly converts solar energy into hydrogen is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration and encouraging progress has been achieved over the past years. However the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.
No more items...