Australia
How Green Are the National Hydrogen Strategies?
Feb 2022
Publication
Since Japan promulgated the world’s first national hydrogen strategy in 2017 28 national (or regional in the case of the EU) hydrogen strategies have been issued by major world economies. As carbon emissions vary with different types of hydrogen and only green hydrogen produced from renewable energy can be zero-emissions fuel this paper interrogates the commitment of the national hydrogen strategies to achieve decarbonization objectives focusing on the question “how green are the national hydrogen strategies?” We create a typology of regulatory stringency for green hydrogen in national hydrogen strategies analyzing the text of these strategies and their supporting policies and evaluating their regulatory stringency toward decarbonization. Our typology includes four parameters fossil fuel penalties hydrogen certifications innovation enablement and the temporal dimension of coal phasing out. Following the typology we categorize the national hydrogen strategies into three groups: zero regulatory stringency scale first and clean later and green hydrogen now. We find that most national strategies are of the type “scale first and clean later” with one or more regulatory measures in place. This article identifies further challenges to enhancing regulatory stringency for green hydrogen at both national and international levels.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Technology Investment Roadmap First Low Emissions Technology Statement – 2020 Global Leadership in Low Emissions Technologies
Sep 2020
Publication
Australia’s Technology Investment Roadmap is a strategy to accelerate development and commercialisation of low emissions technologies.
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
Annual low emissions statements are key milestones of the roadmap process. These statements prioritise low emissions technologies with potential to deliver the strongest economic and emissions reduction outcomes for Australia. They focus government investment on new and emerging technologies.
In this Statement
The first Low Emissions Technology Statement presents a vision of a prosperous Australia recognised as a global low emissions technology leader
- priority technologies and economic stretch goals
- Australia’s big technology challenges and opportunities
- Technology Investment Framework
- monitoring transparency and impact evaluation
A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier
Jun 2021
Publication
Global energy sources are being transformed from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen. The biggest challenge with hydrogen as a renewable energy carrier is the storage and delivery system’s complexity. Therefore other media such as ammonia for indirect storage are now being considered. Research has shown that at reasonable pressures ammonia is easily contained as a liquid. In this form energy density is approximately half of that of gasoline and ten times more than batteries. Ammonia can provide effective storage of renewable energy through its existing storage and distribution network. In this article we aimed to analyse the previous studies and the current research on the preparation of ammonia as a next-generation renewable energy carrier. The study focuses on technical advances emerging in ammonia synthesis technologies such as photocatalysis electrocatalysis and plasmacatalysis. Ammonia is now also strongly regarded as fuel in the transport industrial and power sectors and is relatively more versatile in reducing CO2 emissions. Therefore the utilisation of ammonia as a renewable energy carrier plays a significant role in reducing GHG emissions. Finally the simplicity of ammonia processing transport and use makes it an appealing choice for the link between the development of renewable energy and demand.
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Large-scale Stationary Hydrogen Storage via Liquid Organic Hydrogen Carriers
Aug 2021
Publication
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach liquid organic molecules have emerged as a favorable storage medium because of their desirable properties such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
Explaining Hydrogen Energy Technology Acceptance: A Critical Review
Jan 2022
Publication
The use of hydrogen energy and the associated technologies is expected to increase in the coming years. The success of hydrogen energy technology (HET) is however dependent on public acceptance of the technology. Developing this new industry in a socially responsible way will require an understanding of the psychology factors that may facilitate or impede its public acceptance. This paper reviews 27 quantitative studies that have explored the relationship between psychological factors and HET acceptance. The findings from the review suggest that the perceived effects of the technology (i.e. the perceived benefits costs and risks) and the associated emotions are strong drivers of HET acceptance. This paper does though highlight some limitations with past research that make it difficult to make strong conclusions about the factors that influence HET acceptance. The review also reveals that few studies have investigated acceptance of different types of HET beyond a couple of applications. The paper ends with a discussion about directions for future research and highlights some practical implications for messaging and policy.
Nanotechnology Enabled Hydrogen Gas Sensing
Sep 2019
Publication
An important contribution to industry standards and to effective installation of hybrid renewable energy systems is evaluation of hydrogen (H2) monitoring techniques under pilot-scale and/or real-world conditions. We have designed a hybrid system to integrate solar power electrolysis and hydrogen fuel cell components in a DC micro-grid with capacity to evaluate novel nanomaterials for enhanced H2 gas sensing performance. In general enhanced hydrogen sensing performance is evaluated by high sensitivity selectivity and stability as well as low power consumption. Unique properties such as high surface area to volume ratio a large number of surface active sites high specific surface area and reactivity are key attributes of nanomaterials used for gas sensing. These attributes enable sensors to be embedded in Internet-of-Things applications or in mobile systems. With rapid development of hydrogen-based technologies for clean energy applications there remains a requirement for faster accurate and selective H2 sensors with low cost and low power consumption. Operating principles for these sensors include catalytic thermal conductivity electrochemical resistance based optical and acoustic methods. In this paper we review performance of H2 gas sensors based on conductometric devices operating at room temperature up to 200 °C. The focus of this work includes nanostructured metal oxides graphene materials and transition metal dichalcogenides employed as sensing materials.
Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution
Apr 2014
Publication
Replacement of precious catalyst with cost-effective alternatives would be significantly beneficial for hydrogen production via electrocatalytic hydrogen evolution reaction (HER). All candidates thus far are exclusively metallic catalysts which suffer inherent corrosion and oxidation susceptibility during acidic proton-exchange membrane electrolysis. Herein based on theoretical predictions we designed and synthesized nitrogen (N) and phosphorus (P) dual-doped graphene as a non-metallic electrocatalyst for sustainable and efficient hydrogen production. The N and Phetero-atoms could coactivate the adjacent C atom in the graphene matrix by affecting its valence orbital energy levels to induce a synergistically enhanced reactivity toward HER. As a result the dual-doped graphene showed higher electrocatalytic HER activity than single-doped ones and comparable performance to some of the traditional metallic catalysts.
Optimal Supply Chains and Power Sector Benefits of Green Hydrogen
Jul 2021
Publication
Green hydrogen can help to decarbonize parts of the transportation sector but its power sector interactions are not well understood so far. It may contribute to integrating variable renewable energy sources if production is sufficiently flexible in time. Using an open-source co-optimization model of the power sector and four options for supplying hydrogen at German filling stations we find a trade-of between energy efficiency and temporal flexibility. For lower shares of renewables and hydrogen more energy-efficient and less flexible small-scale on-site electrolysis is optimal. For higher shares of renewables and/or hydrogen more flexible but less energy-efficient large-scale hydrogen supply chains gain importance as they allow to temporally disentangle hydrogen production from demand via storage. Liquid hydrogen emerges as particularly beneficial followed by liquid organic hydrogen carriers and gaseous hydrogen. Large-scale hydrogen supply chains can deliver substantial power sector benefits mainly through reduced renewable curtailment. Energy modelers and system planners should consider the distinct flexibility characteristics of hydrogen supply chains in more detail when assessing the role of green hydrogen in future energy transition scenarios. We also propose two alternative cost and emission metrics which could be useful in future analyses.
Enhanced Hydrogen Storage of Alanates: Recent Progress and Future Perspectives
Feb 2021
Publication
The global energy crisis and environmental pollution have caused great concern. Hydrogen is a renewable and environmentally friendly source of energy and has potential to be a major alternative energy carrier in the future. Due to its high capacity and relatively low cost of raw materials alanate has been considered as one of the most promising candidates for hydrogen storage. Among them LiAlH4 and NaAlH4 as two representative metal alanates have attracted extensive attention. Unfortunately the high desorption temperature and sluggish kinetics restrict its practical application. In this paper the basic physical and chemical properties as well as the hydrogenation/dehydrogenation reaction mechanism of LiAlH4 and NaAlH4 are briefly reviewed. The recent progress on strategic optimizations toward tuning the thermodynamics and kinetics of the alanate including nanoscaling doping catalysts and compositing modification are emphatically discussed. Finally the coming challenges and the development prospects are also proposed in this review.
Cautiously Optimistic: Understanding the Australian Public’s Response to the Hydrogen Opportunity
Sep 2019
Publication
The increased activity across the technical world for developing hydrogen has not gone unnoticed at the political level. However there remains a gap in understanding of how the general public will respond to the development of such an emergent industry. Recognising this gap we undertook ten focus groups (N=92) and a nationally representative online survey (N=2785) with the Australian public to better understand their response to hydrogen and the opportunities it presents for export and domestic use. In both focus groups and the national survey when Australians first heard the word hydrogen they were most likely to respond with a neutral response. For example in the survey 81% responded with words such as gas energy water; with only 13% giving negative associations (e.g. bomb explosion Hindenburg); and 3% positive (e.g. clean future). Males were more likely to be supportive of hydrogen than females. Those who answered more knowledge questions correctly were also more supportive. The main benefits associated with the use of hydrogen technologies centred around the environment - reduced greenhouse gas emissions and climate change mitigation potential were key benefits. With safety cost and environmental impacts - particularly concerns around pollution emissions and water use - being the most frequently cited concerns about the production and use of hydrogen. This presentation focuses on Australian attitudes to the developing hydrogen export opportunity and also for domestic use. Implications for industry and policy makers will be discussed in light of these Australians responses.
Autoignition of Hydrogen/Ammonia Blends at Elevated Pressures and Temperatures
Sep 2019
Publication
Hydrogen stored or transported as ammonia has been proposed as a sustainable carbon-free alternative for fossil-fuels in high-temperature industrial processes including power generation. Although ammonia itself is toxic and exhibits both a low flame speed and calorific value it rapidly decomposes to hydrogen in high temperature environments suggesting the potential use in applications which incorporate fuel preheating. In this work the rate of ammonia-to-hydrogen decomposition is initially simulated at elevated temperatures to indicate the proportion of fuel conversion in conditions similar to gas pipelines gas-turbines or furnaces with exhaust-gas recirculation. Following this different proportions of hydrogen and ammonia are numerically simulated in independent zero-dimensional plug-flow-reactors at pressures ranging from atmospheric to 50 MPa and pre-heating temperatures from 600 K to 1600 K. Deflagration of very-lean-to-fuel-rich mixtures was investigated employing air as the oxidant stream. Analyses of these reactors provide estimates of autoignition thresholds of the hydrogen/ammonia blends which are relevant for the safe implementation and operation of hydrogen/ammonia blends or pure ammonia as a fuel source. Further operational considerations are subsequently identified for using ammonia or hydrogen/ammonia blends as a hydrogen fuel carrier by quantifying residual concentrations of hydrogen and ammonia fuel products as well as other toxic emissions within the hot exhaust products.
Early Community Engagement with Hydrogen in Australia
Sep 2019
Publication
Community support and acceptance is part of the licence to operate for any industry. The hydrogen industry is no different and we will need to have strong support from the broad community to establish a viable hydrogen economy in Australia.<br/>As Woodside progresses our plans for bulk hydrogen export and associated domestic opportunities stakeholder engagement throughout will be critical to success. This talk will share Woodside’s approach to community engagement and local opportunities and how we plan to draw on more than 30 years’ experience operating liquefied natural gas plants in Western Australia’s Pilbara region.<br/>At this early stage of our hydrogen work we are beginning with the end in mind: engaging the customer. We’ve worked with local Australian businesses to help raise public awareness and interest in hydrogen by producing prototype consumer products. We will share experiences from this work that underscore the value of early engagement with all stakeholders: government regulators industrial and community neighbours and end consumers to enable the hydrogen economy vision for Australia. This paper will present information on community engagement and acceptance of hydrogen in Australia.<br/>This information has come from Woodside Energy Ltd by engaging with small businesses government regulators and the community at large. As we establish community acceptance for hydrogen as an energy carrier in Australia Woodside has been working in parallel to have standards and regulations established for hydrogen in Australia. Through our work with Hydrogen Mobility Australia we are advocating the adoption of ISO standards unless there is a specific geographic or health safety and environment reason not to.
Delivering a Safe, Viable Hydrogen Economy in Australia
Sep 2019
Publication
At Woodside Energy Ltd (Woodside) safety is built into everything we do and progressing hydrogen opportunities is no exception. This paper will present information from the macro level of process safety for hydrogen at a plant level through to the consumer experience. Examples of the benefits of an integrated process safety approach will be used from Woodside’s experience pioneering the liquefied natural gas industry in Australia.<br/>This paper will underscore the reasons why Australia needs to adopt robust safety standards for hydrogen as quickly as possible in order to advance the hydrogen economy across all sectors. Focus areas requiring attention during development of standards and potential mechanisms to close will be proposed. Establishing a hydrogen economy in Australia could lower carbon emissions stabilise power grids increase renewable energy penetration and create jobs. Developing Australian standards that are fully aligned with international standards will facilitate Australia taking a leading role in the global hydrogen economy.
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Designing Optimal Integrated Electricity Supply Configurations for Renewable hydrogen Generation in Australia
Jun 2021
Publication
The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably economically and sustainably using pre-dominantly or exclusively variable renewables. To address these questions we develop a comprehensive cost framework that extends to include factors such as performance degradation efficiency financing rates and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market (ii) existing so-lar/wind farm generation curves and (iii) electrolyzer capital costs/performance to determine costs of H2production in the near (2020–2040) and long term(2030–2050). Furthermore we analyze dedicated off-grid integrated electro-lyzer plants as an alternate operating scenario suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
HyP SA – Our safety story
Sep 2019
Publication
Australian Gas Infrastructure Group’s (AGIG’s) vision is to be the leading gas infrastructure business in Australia this means delivering for our customers being a good employer and being sustainably cost efficient. Establishing and developing a hydrogen industry is a key pathway for us to achieve our vision.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
In South Australia AGIG is pioneering the introduction of hydrogen into its existing gas distribution networks through the Hydrogen Park South Australia (HyP SA) project. With safety our top priority we would like to give an overview of the safety considerations of our site our network methodology and the development of new safety procedures and culture regarding the production handling and reticulation of a 5% hydrogen blend.
We will cover three themes each having a safety story that is specific to the Australian context and to the project’s success:
The Production Plant and Site
Project site safety known hazards and risk mitigation electrical protection safety procedures lighting and security. Hydrogen storage filling and transportation.
The Network
Securing the network for an isolated safe demonstration footprint. Gas network and hydrogen safety considerations why 5%? Emergency procedures and crew training. New safety regulations blended networks. How does hydrogen perform in a blended gas with respect to leaks? How safe is the existing network and what sensors and controls are we using.
The Home
Introducing blended gas to existing homes. Appliance safety and failure mode analysis. Community engagement and education on a 5% renewable hydrogen gas blend and use in the home
.
We aim to give a comprehensive overview of delivering a safe demonstration network for the HyP SA project in terms of the three main ecosystems that the hydrogen will be present our learnings so far and the development of the safety methodologies that will be applied in the industry in the future.
No more items...