Argentina
Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review
Jul 2018
Publication
The safest way to store hydrogen is in solid form physically entrapped in molecular form in highly porous materials or chemically bound in atomic form in hydrides. Among the different families of these compounds alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997 when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li Na K Ca Mg Y Eu and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performance.
Tetrahydroborates: Development and Potential as Hydrogen Storage Medium
Oct 2017
Publication
The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative hydrogen is widely regarded as a key element for a potential energy solution. However differently from fossil fuels such as oil gas and coal the production of hydrogen requires energy. Alternative and intermittent renewable energy sources such as solar power wind power etc. present multiple advantages for the production of hydrogen. On the one hand the renewable sources contribute to a remarkable reduction of pollutants released to the air and on the other hand they significantly enhance the sustainability of energy supply. In addition the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of renewable energy sources. In this regard hydrogen storage technology is a key technology towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen solid-state storage is the most attractive alternative from both the safety and the volumetric energy density points of view. Because of their appealing hydrogen content complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review the progresses made over the last century on the synthesis and development of tetrahydroborates and tetrahydroborate-based systems for hydrogen storage purposes are summarized.
Scale-up of Milling in a 100 L Device for Processing of TiFeMn Alloy for Hydrogen Storage Applications: Procedure and characterization
Feb 2019
Publication
In this work the mechanical milling of a FeTiMn alloy for hydrogen storage purposes was performed in an industrial milling device. The TiFe hydride is interesting from the technological standpoint because of the abundance and the low cost of its constituent elements Ti and Fe as well as its high volumetric hydrogen capacity. However TiFe is difficult to activate usually requiring a thermal treatment above 400 °C. A TiFeMn alloy milled for just 10 min in a 100 L industrial milling device showed excellent hydrogen storage properties without any thermal treatment. The as-milled TiFeMn alloy did not need any activation procedure and showed fast kinetic behavior and good cycling stability. Microstructural and morphological characterization of the as-received and as-milled TiFeMn alloys revealed that the material presents reduced particle and crystallite sizes even after such short time of milling. The refined microstructure of the as-milled TiFeMn is deemed to account for the improved hydrogen absorption-desorption properties.
Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage
Apr 2018
Publication
Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Department of Energy (DOE). Recent projections indicate that a system possessing: (i) an ideal enthalpy in the range of 20–50 kJ/mol H2 to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii) a gravimetric hydrogen density of 5 wt. % H2 and (iii) fast sorption kinetics below 110 ◦C is strongly recommended. Among the known hydrogen storage materials amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however some barriers still have to be overcome before considering this class of material mature for real applications. In this review the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties experimentally measured for the most promising systems are reported and properly discussed.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Non-Precious Electrodes for Practical Alkaline Water Electrolysis
Apr 2019
Publication
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations low temperature low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts namely from the iron group elements (iron nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 ◦C which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 ◦C which ran for one month at 300 mA cm−2 . Finally the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 ◦C and 1 A cm−2.
Blending Hydrogen in Existing Natural Gas Pipelines: Integrity Consequences from a Fitness for Service Perspective
Jun 2023
Publication
Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth promotes subcritical cracking and decreases fracture toughness. In this regard several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere KIH can be 50% or less than KIC the fracture toughness measured in air. From a pipeline integrity perspective fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size as shown in this work the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work all those effects were quantified using a crack assessment methodology (level 2 API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios various crack sizes were assumed including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
No more items...