A Comparative Study of CFD-Modelling for Lean Premixed Hydrogen Deflagrations in Large-scale Vented Vessels
Abstract
Hydrogen combustion inside a post-accident nuclear reactor containment may pose a challenge to the containment integrity, which could alter the fission-product release source term to the public. Combustion-generated overpressures may be relieved by venting to adjacent compartments through relief panels or existing openings. Thus, an improved understanding of the propagation of lean hydrogen deflagrations in inter-connected compartments is essential for the development of appropriate management strategies. GOTHIC is a general purpose, lumped parameter thermal-hydraulic code for solving multi-phase compressible flows, which is accepted as an industry-standard code for containment safety analyses. Following the Fukushima accident, the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes has become more widespread. In this study, a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in large-scale vented vessels of various configurations. The LES predictions are compared with GOTHIC predictions and experimental data obtained from the large-scale vented combustion test facility at the Canadian Nuclear Laboratories. The LES methodology makes use of a flamelet- or a progress-variable-based combustion model. An empirical burning velocity model is combined with an advanced finite-volume framework and a mesh-independent subfilter-scale model. Descriptions of the LES and GOTHIC modelling approaches used to simulate the hydrogen reactive flows in the vented vessels along with the experimental data sets are given. The potential and limitations of the lumped parameter and LES approaches for accurately describing lean premixed hydrogen deflagrations in vented vessels are discussed.