Transmission, Distribution & Storage
Leakage and Diffusion Characteristics of Underground Hydrogen Pipeline
Jun 2023
Publication
Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes diffuses and accumulating in the soil and entering the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. Effect of leakage hole soil type pipeline pressure pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks the hydrogen concentration increases with the increase of leakage time showing a symmetrical distribution trend. With the pipeline pressure increase hydrogen leakage speed is accelerated and longitudinal diffusion gradually becomes the dominant direction. With the leakage diameter increases hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil and diffusion speed concentration and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.
The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China
Jun 2023
Publication
In the process of building a new power system with new energy sources as the mainstay wind power and photovoltaic energy enter the multiplication stage with randomness and uncertainty and the foundation and support role of large-scale long-time energy storage is highlighted. Considering the advantages of hydrogen energy storage in large-scale cross-seasonal and cross-regional aspects the necessity feasibility and economy of hydrogen energy participation in long-time energy storage under the new power system are discussed. Firstly power supply and demand production simulations were carried out based on the characteristics of new energy generation in China. When the penetration of new energy sources in the new power system reaches 45% long-term energy storage becomes an essential regulation tool. Secondly by comparing the storage duration storage scale and application scenarios of various energy storage technologies it was determined that hydrogen storage is the most preferable choice to participate in large-scale and long-term energy storage. Three long-time hydrogen storage methods are screened out from numerous hydrogen storage technologies including salt-cavern hydrogen storage natural gas blending and solid-state hydrogen storage. Finally by analyzing the development status and economy of the above three types of hydrogen storage technologies and based on the geographical characteristics and resource endowment of China it is pointed out that China will form a hydrogen storage system of “solid state hydrogen storage above ground and salt cavern storage underground” in the future.
Comparative Techno-economic Analysis of Large-scale Renewable Energy Storage Technologies
Jun 2023
Publication
Energy storage is an effective way to address the instability of renewable energy generation modes such as wind and solar which are projected to play an important role in the sustainable and low-carbon society. Economics and carbon emissions are important indicators that should be thoroughly considered for evaluating the feasibility of energy storage technologies (ESTs). In this study we study two promising routes for large-scale renewable energy storage electrochemical energy storage (EES) and hydrogen energy storage (HES) via technical analysis of the ESTs. The levelized cost of storage (LCOS) carbon emissions and uncertainty assessments for EESs and HESs over the life cycle are conducted with full consideration of the critical links for these routes. In order to reduce the evaluation error we use the Monte Carlo method to derive a large number of data for estimating the economy and carbon emission level of ESTs based on the collected data. The results show that lithium ion (Li-ion) batteries show the lowest LCOS and carbon emissions at 0.314 US$ kWh-1 and 72.76 gCO2e kWh-1 compared with other batteries for EES. Different HES routes meaning different combinations of hydrogen production delivery and refueling methods show substantial differences in economics and the lowest LCOS and carbon emissions at 0.227 US$ kWh-1 and 61.63 gCO2e kWh-1 are achieved using HES routes that involve hydrogen production by alkaline electrolyzer (AE) delivery by hydrogen pipeline and corresponding refueling. The findings of this study suggest that HES and EES have comparable levels of economics and carbon emissions that should be both considered for large-scale renewable energy storage to achieve future decarbonization goals.
A Techno-economic Study of the Strategy for Hydrogen Transport by Pipelines in Canada
Jan 2023
Publication
Hydrogen as a clean zero-emission energy fuel will play a critical role in energy transition and achievement of the net-zero target in 2050. Hydrogen delivery is integral to the entire value chain of a full-scale hydrogen economy. This work conducted a systematic review and analysis of various hydrogen transportation methods including truck tankers for liquid hydrogen tube trailers for gaseous hydrogen and pipelines by identifying and ranking the main properties and affecting factors associated with each method. It is found that pipelines especially the existing natural gas pipelines provide a more efficient and cheaper means to transport hydrogen over long distances. Analysis was further conducted on Canadian natural gas pipeline network which has been operating for safe effective and efficient energy transport over six decades. The established infrastructure along with the developed operating and management experiences and skillful manpower makes the existing pipelines the best option for transport of hydrogen in either blended or pure form in the country. The technical challenges in repurposing the existing natural gas pipelines for hydrogen service were discussed and further work was analyzed.
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities
Aug 2023
Publication
Hydrogen is being included in several decarbonization strategies as a potential contributor in some hard-to-abate applications. Among other challenges hydrogen storage represents a critical aspect to be addressed either for stationary storage or for transporting hydrogen over long distances. Ammonia is being proposed as a potential solution for hydrogen storage as it allows storing hydrogen as a liquid chemical component at mild conditions. Nevertheless the use of ammonia instead of pure hydrogen faces some challenges including the health and environmental issues of handling ammonia and the competition with other markets such as the fertilizer market. In addition the technical and economic efficiency of single steps such as ammonia production by means of the Haber–Bosch process ammonia distribution and storage and possibly the ammonia cracking process to hydrogen affects the overall supply chain. The main purpose of this review paper is to shed light on the main aspects related to the use of ammonia as a hydrogen energy carrier discussing technical economic and environmental perspectives with the aim of supporting the international debate on the potential role of ammonia in supporting the development of hydrogen pathways. The analysis also compares ammonia with alternative solutions for the long-distance transport of hydrogen including liquefied hydrogen and other liquid organic carriers such as methanol.
A Review on the Factors of Liner Collapse in Type IV Hydrogen Storage Vessels
Sep 2023
Publication
The on-board hydrogen storage of mobile applications is a key area of global industrial transformation to hydrogen technology. The research work provides an overview about the principle of hydrogen fuel cell vehicles with a focus on the widespread on-board hydrogen storage technologies. In this work type IV composite pressure vessels in particular are reviewed. The key challenges of polymeric liners are deeply investigated and liner collapse was identified as a critical failure of type IV vessels. Different factors of liner collapse were categorized and relevant material properties - such as permeability physical characteristics and surface properties - were explained in more detail to lay the foundation for further research on high barrier durable polymeric liner materials.
OIES Podcast - Renewable Hydrogen Import Routes into the EU
Jun 2023
Publication
In this podcast David Ledesma talks to Martin Lambert and Abdurahman Alsulaiman about the potential hydrogen import market particularly focusing on the EU which currently holds the largest and earliest hydrogen target. The podcast explores the emerging hydrogen trade market and considers numerous possibilities for its open up providing better clarity on policy statements and balance them against project announcements.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Throughout the podcast Martin and Abdulrahman delve into various key points – they shed light on the primary areas of focus for projects set to be completed by or before 2030 as well as the distinction between announcements and tangible progress such as projects currently at the Final Investment Decision stage or under construction.
Additionally they explore the EU’s role as one of the few countries to have publicly announced its requirements for hydrogen imports and its ambitious hydrogen import target. The EU is currently establishing a benchmark for the future hydrogen market. However in order for the EU to succeed in establishing future hydrogen supply lines with future trade partners it will be crucial to engage in open dialogues covering a wide range of topics.
Join us in this podcast as we uncover the potential of the hydrogen import market with a specific focus on the EU and discuss the necessary steps for its success.
The podcast can be found on their website.
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning
Sep 2023
Publication
Smart energy networks provide an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind which are key for the deep decarbonisation of energy production. However given the variability of the renewables as well as the energy demand it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this we propose a multi-agent deep deterministic policy gradient approach which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that (i) integration and optimised operation of the hybrid energy storage system and energy demand reduce carbon emissions by 78.69% improve cost savings by 23.5% and improve renewable energy utilisation by over 13.2% compared to other baseline models; and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the deep-Q network.
Optimizing the Operational Efficiency of the Underground Hydrogen Storage Scheme in a Deep North Sea Aquifer through Compositional Simulations
Aug 2023
Publication
In this study we evaluate the technical viability of storing hydrogen in a deep UKCS aquifer formation through a series of numerical simulations utilising the compositional simulator CMG-GEM. Effects of various operational parameters such as injection and production rates number and length of storage cycles and shut-in periods on the performance of the underground hydrogen storage (UHS) process are investigated in this study. Results indicate that higher H2 operational rates degrade both the aquifer's working capacity and H2 recovery during the withdrawal phase. This can be attributed to the dominant viscous forces at higher rates which lead to H2 viscous fingering and gas gravity override of the native aquifer water resulting in an unstable displacement of water by the H2 gas. Furthermore analysis of simulation results shows that longer and less frequent storage cycles lead to higher storage capacity and decreased H2 retrieval. We conclude that UHS in the studied aquifer is technically feasible however a thorough evaluation of the operational parameters is necessary to optimise both storage capacity and H2 recovery efficiency.
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
Comparative Sustainability Study of Energy Storage Technologies Using Data Envelopment Analysis
Mar 2022
Publication
The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To this end storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost of energy energy and water consumption global warming potential and employment are common indicators considered for both clusters while energy density is used only for fast-response technologies where it plays a key role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis is incorporated to discuss the reliability of the results. Overall results obtained and guidelines provided can be helpful for both decision-making and research and development purposes. For the former we identify the most appealing energy storage options to be promoted while for the latter we report quantitative improvement targets that would make inefficient technologies competitive if attained. This contribution paves the way for more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing options according to multiple sustainability indicators.
Numerical Modelling of H2 Storage with Cushion Gas of CO2 in Subsurface Porous Media: Filter Effects of CO2 Solubility
Jun 2022
Publication
The central objective of this study is to improve the understanding of flow behaviour during hydrogen (H2) storage in subsurface porous media with a cushion gas of carbon dioxide (CO2). In this study we investigate the interactions between various factors driving the flow behaviour including the underlying permeability heterogeneity viscous instability and the balance between the viscous and gravity forces. In particular we study the impact of CO2 solubility in water on the level of H2 purity. This effect is demonstrated for the first time in the context of H2 storage. We have performed a range of 2D vertical cross-sectional simulations at the decametre scale with a very fine cell size (0.1 m) to capture the flow behaviour in detail. This is done since it is at this scale that much of the mixing between injected and native fluids occurs in physical porous media. It is found that CO2 solubility may have different (positive and negative) impacts on the H2 recovery performance (i.e. on the purity of the produced H2) depending on the flow regimes in the system. In the viscous dominated regime the less viscous H2 may infiltrate and bypass the cushion gas of CO2 during the period of H2 injection. This leads to a quick and dramatic reduction in the H2 purity when back producing H2 due to the co-production of the previously bypassed CO2. Interestingly the impurity levels in the H2 are much less severe in the case when CO2 solubility in water is considered. This is because the bypassed CO2 will redissolve into the water surrounding the bypassed zones which greatly retards the movement of CO2 towards the producer. In the gravity dominated scenario H2 accumulates at the top of the model and displaces the underlying cushion gas in an almost piston-like fashion. Approximately 58% of H2 can be recovered at a purity level above 98% (combustion requirements by ISO) in this gravity-dominated case. However when CO2 solubility is considered the H2 recovery performance is slightly degraded. This is because the dissolved CO2 is also gradually vaporised during H2 injection which leads to an expansion of mixing zone of CO2 and H2. This in turn reduces the period of high H2 purity level (>98%) during back-production.
Pore-scale Dynamics for Underground Porous Media Hydrogen Storage
Mar 2022
Publication
Underground hydrogen storage (UHS) has been launched as a catalyst to the low-carbon energy transitions. The limited understanding of the subsurface processes is a major obstacle for rapid and widespread UHS implementation. We use microfluidics to experimentally describe pore-scale multiphase hydrogen flow in an aquifer storage scenario. In a series of drainage-imbibition experiments we report the effect of capillary number on hydrogen saturations displacement/trapping mechanisms dissolution kinetics and contact angle hysteresis. We find that the hydrogen saturation after injection (drainage) increases with increasing capillary number. During hydrogen withdrawal (imbibition) two distinct mechanisms control the displacement and residual trapping – I1 and I2 imbibition mechanisms respectively. Local hydrogen dissolution kinetics show dependency on injection rate and hydrogen cluster size. Dissolved global hydrogen concentration corresponds up to 28 % of reported hydrogen solubility indicating pore-scale non-equilibrium dissolution. Contact angles show hysteresis and vary between 17 and 56°. Our results provide key UHS experimental data to improve understanding of hydrogen multiphase flow behavior.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Evaluation of Hydrogen-induced Cracking in High-strength Steel Welded Joints by Acoustic Emission Technique
Feb 2020
Publication
Hydrogen-induced cracking behavior in high-strength steel mainly composed of martensite was analyzed by acoustic emission (AE) technique and finite element method (FEM) in slow strain-rate tensile (SSRT) tests and welding tests. The crack initiation was detected by the AE signals and the time evolution of stress concentration and hydrogen diffusion were calculated by FEM. The effect of hardness and plastic strain on the hydrogen diffusion coefficientwas explicitly introduced into the governing equation in FEM. The criterion and indicator parameter for the crack initiation were derived as a function of maximum principal stress and locally accumulated hydrogen concentration. The results showed that the cracking criterion derived by AE and FEM is useful for predicting the cold cracking behavior and determining the critical preheat temperature to prevent hydrogeninduced cracking.
In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds
Aug 2021
Publication
This work discusses the design and demonstration of an in-situ test setup for testing pipeline steels in a high pressure gaseous hydrogen (H2 ) environment. A miniature hollow pipe-like tensile specimen was designed that acts as the gas containment volume during the test. Specific areas of the specimen can be forced to fracture by selective notching as performed on the weldment. The volume of H2 used was minimised so the test can be performed safely without the need of specialised equipment. The setup is shown to be capable of characterising Hydrogen Embrittlement (HE) in steels through testing an X60 pipeline steel and its weldment. The percentage elongation (%El) of the base metal was found to be reduced by 40% when tested in 100 barg H2 . Reduction of cross-sectional area (%RA) was found to decrease by 28% and 11% in the base metal and weld metal respectively when tested in 100 barg H2 . Benchmark test were performed at 100 barg N2 pressure. SEM fractography further indicated a shift from normal ductile fracture mechanisms to a brittle transgranular (TG) quasi-cleavage (QC) type fracture that is characteristic of HE.
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation demand and storage energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load storage efficiency operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation.
Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables
Oct 2018
Publication
This paper presents a case study of using hydrogen for large-scale long-term storage application to support the current electricity generation mix of South Australia state in Australia which primarily includes gas wind and solar. For this purpose two cases of battery energy storage and hybrid battery-hydrogen storage systems to support solar and wind energy inputs were compared from a techno-economical point of view. Hybrid battery-hydrogen storage system was found to be more cost competitive with unit cost of electricity at $0.626/kWh (US dollar) compared to battery-only energy storage systems with a $2.68/kWh unit cost of electricity. This research also found that the excess stored hydrogen can be further utilised to generate extra electricity. Further utilisation of generated electricity can be incorporated to meet the load demand by either decreasing the base load supply from gas in the present scenario or exporting it to neighbouring states to enhance economic viability of the system. The use of excess stored hydrogen to generate extra electricity further reduced the cost to $0.494/kWh.
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
No more items...