Safety
The Study on the Internal Temperature Change of Type 3 and Type 4 Composite Cylinder During Filling
Sep 2013
Publication
The number of eco friendly vehicle which is using green energy such as natural gas(NG) and hydrogen(H2) is rapidly increasing in the world. Almost all of the car manufacturers are adopting the pressurizing fuel method to storage gas. The fuel storage system which can pressurize the fuel as high as possible is necessary to maximize the mileage of the vehicle. In Korea the most important issue is that makes sure of safety of the fuel storage system and several tests are performed to verify safety of the composite cylinder especially for Type 3 and Type 4. In this research an empirical study on the internal temperature change of Type 3 and Type 4 composite cylinder during filling is performed by gas cycling test equipment. In order to measure the temperature totally twelve sensors(every four sensors on the top middle and bottom) are installed in each cylinder. As a consequence large amount of compression heat is generated during rapid filling and the result temperature change in Type 4 is greater than Type 3 is confirmed depending on property of the liner material such as thermal conduction and thickness of carbon composite.
ISO 19880-1, Hydrogen Fueling Station and Vehicle Interface Safety Technical Report
Oct 2015
Publication
Hydrogen Infrastructures are currently being built up to support the initial commercialization of the fuel cell vehicle by multiple automakers. Three primary markets are presently coordinating a large build up of hydrogen stations: Japan; USA; and Europe to support this. Hydrogen Fuelling Station General Safety and Performance Considerations are important to establish before a wide scale infrastructure is established.
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
This document introduces the ISO Technical Report 19880-1 and summarizes main elements of the proposed standard. Note: this ICHS paper is based on the draft TR 19880 and is subject to change when the document is published in 2015. International Standards Organisation (ISO) Technical Committee (TC) 197 Working Group (WG) 24 has been tasked with the preparation of the ISO standard 19880-1 to define the minimum requirements considered applicable worldwide for the hydrogen and electrical safety of hydrogen stations. This report includes safety considerations for hydrogen station equipment and components control systems and operation. The following systems are covered specifically in the document as shown in Figure 1:
- H2 production / supply delivery system
- Compression
- Gaseous hydrogen buffer storage;
- Pre-cooling device;
- Gaseous hydrogen dispensers.
- Hydrogen Fuelling Vehicle Interface
Hydrogen Bubble Dispersion and Surface Bursting Behaviour
Sep 2013
Publication
In many processes where hydrogen may be released from below a liquid surface there has been concern regarding how such releases might ultimately disperse in an ullage space. Knowledge of the extent and persistence of any flammable volume formed is needed for hazardous area classification as well as for validation of explosion modelling or experiments. Following an initial release of hydrogen the overall process can be subdivided into three stages (i) rise and possible break-up of a bubble in the liquid (ii) formation and bursting of a thin gas-liquid-gas interface at the liquid surface and (iii) dispersion of the released gas. An apparatus based on a large glass sided water tank has been constructed which employs two synchronised high-speed imaging systems to record the behaviour of hydrogen bubble release and dispersion. A high-speed digital video system records the rising of the bubbles and the formation and bursting of the gas-liquid-gas interface at the liquid surface. An additional schlieren system is used to visualise the hydrogen release as bubbles burst at the liquid surface. The bubble burst mechanism can clearly be described from the results obtained. Following the nucleation of a hole surface tension causes the liquid film to peel back rapidly forming a ring/torus of liquid around the enlarging hole. This process lasts only a few milliseconds. Although some hydrogen can be seen to be expelled from the bubble much seems to remain in place as the film peels away. To assess the extent of the flammable plume following a bubble burst the apparatus was modified to include an electric-arc igniter. In order to identify plumes coincident in space with the igniter a schlieren system was built capable of recording simultaneously in two orthogonal directions. This confirmed that clouds undetected by the schlerien imaging could not be ignited with the electric arc igniter.
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/storage system and the hydrogen use system. Related to their designs we have to consider their hazards polluted scenarios and safety measures via a safety assessment process that is compliant with international risk assessment standards. To verify safety designs related experiments and analyses will be conducted. This paper describes the approach to safety design for especially the related liquid hydrogen facilities.
Gas Build-up in a Domestic Property Following Releases of Methane/Hydrogen Mixtures
Sep 2007
Publication
The EC funded Naturalhy project is investigating the possibility of promoting the swift introduction of hydrogen as a fuel by mixing hydrogen with natural gas and transporting this mixture by means of the existing natural gas pipeline system to end-users. Hydrogen may then be extracted for use in hydrogen fuel cell applications or the mixture may be used directly in conventional gas-fired equipment. This means that domestic customers would receive a natural gas (methane)/hydrogen mixture delivered to the home. As the characteristics of hydrogen are different from natural gas there may be an increased risk to end-users in the event of an accidental release of gas from internal pipe work or appliances. Consequently part of the Naturalhy project is aimed at assessing the potential implications on the safety of the public which includes end-users in their homes. In order to understand the nature of any gas accumulation which may form and identify the controlling parameters a series of large scale experiments have been performed to study gas accumulations within a 3 m by 3 m by 2.3 m ventilated enclosure representing a domestic room. Gas was released vertically upwards at a pressure typical of that experienced in a domestic environment from hole sizes representative of leaks and breaks in pipe work. The released gas composition was varied and included methane and a range of methane/hydrogen mixtures containing up to 50% hydrogen. During the experiments gas concentrations throughout the enclosure and the external wind conditions were monitored with time. The experimental data is presented. Analysis of the data and predictions using a model developed to interpret the experimental data show that both buoyancy and wind driven ventilation are important.
Visualization of Auto-ignition Phenomenon Under the Controlled Burst Pressure
Oct 2015
Publication
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon called spontaneous ignition is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism but such ignition has not yet been well clarified. In this study the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall followed by multiple ignitions as the shock wave propagates with the ignitions eventually combining to form a flame.
High Pressure Hydrogen Tank Rupture: Blast Wave and Fireball
Oct 2015
Publication
In the present study the phenomena of blast wave and fireball generated by high pressure (35 MPa) hydrogen tank (72 l) rupture have been investigated numerically. The realizable k-ε turbulence model was applied. The simulation of the combustion process is based on the eddy dissipation model coupled with the one step chemical reaction mechanism. Simulation results are compared with experimental data from a stand-alone hydrogen fuel tank rapture following a bonfire test. The model allows the study of the interaction between combustion process and blast wave propagation. Simulation results (blast wave overpressure fireball shape and size) follow the trends observed in the experiment.
Safety Concept of Nuclear Cogeneration of Hydrogen and Electricity
Oct 2015
Publication
There is a significant potential for nuclear combined heat and power (CHP) in quite a number of industries. The reactor concepts of the next generation would be capable to open up in particular the high temperature heat market where nuclear energy is applicable to the production processes of hydrogen (or liquid fuels) by steam reforming or water splitting. Due to the need to locate a nuclear facility near the hydrogen plant an overall safety concept has to deal with the question of safety of the combined nuclear/industrial system by taking into account a qualitatively new class of events characterized by interacting influences. Specific requirements will be determined by such factors as the reactor type the nature of the industrial process the separation distances of the industrial facility and population centers from the nuclear plant and prevailing public attitudes. Based on the Japanese concept of the GTHTR300C nuclear reactor for electricity and hydrogen cogeneration theoretical studies were conducted on the release dispersive transport and explosion of a hydrogen cloud in the atmosphere for the sake of assessing the required minimum separation distance to avoid any risk to the nuclear plant's safety systems. In the case of sulfur-iodine water splitting the accidental release of process intermediates including large amounts of sulfur dioxide sulfur trioxide and sulfuric acid need to be investigated as well to estimate the potential risk to nuclear installations like the operators' room and estimate appropriate separation distances against toxic gas propagation. Results of respective simulation studies will be presented.
Numerical Investigation of Vented Hydrogen-air Deflagration in a Chamber
Oct 2015
Publication
This paper shows numerical investigation related to hydrogen-air deflagration venting. The aim of this study is to clarify the influence of concentration gradient on the pressure histories and peak pressures in a chamber. The numerical analysis target is a 27 m3 cubic chamber which has 2.6 m2 vent area on the sidewall. The vent opening pressure is set to be gauge 10 kPa. Two different conditions of the hydrogen concentration are assumed which are uniform and gradient. In the uniform case 15 20 25 30 and 35 vol.% concentrations are assumed. In the gradient case the concentration linearly increases from 0 vol.% (at the ground) to 30 40 50 60 70 vol.% (at the ceiling). The initial total mass of hydrogen inside the chamber is the same as the uniform case. Moreover three different ignition points are assumed: on the rear center and the front of the chamber relative to the vent. The deflagrations are initiated by a single ignition source. In most gradient cases the highest peak is lower than in the uniform case though the initial total mass of hydrogen inside the chamber is the same as in the uniform case. This is because the generated burned gas per time is smaller in the gradient case than in the uniform case. In 15 vol.% gradient case however the peak pressure gets higher than in the uniform case. This is because in 15 vol.% gradient case the burning velocity around the ignition point gets faster and the flame surface gets larger which induces larger amount of burned gas per time.
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
CFD design of protective walls against the effects of vapor cloud fast deflagration of hydrogen
Oct 2015
Publication
Protective walls are a well-known and efficient way to mitigate overpressure effects of accidental explosions (detonation or deflagration). For detonation there are multiple published studies whereas for deflagration no well-adapted and rigorous method has been reported in the literature. This article describes the validation of a new modelling approach for fast deflagrations of H2. This approach includes two steps. At the first step the combustion phase of vapor cloud explosion (VCE) involving a fast deflagration is substituted by equivalent vessel burst problem. The purpose of this step is to avoid the reactive flow computations. At the second step CFD is used for computations of pressure propagation from the equivalent (non reactive) vessel burst problem. After verifying the equivalence of the fast deflagration and the vessel burst problem at the first step the capability of two CFD codes such as FLACS and Europlexus are examined for modelling of the vessel burst problem (with and without barriers). Finally the efficiency of finite and infinite barriers used for mitigation of the shock is investigated
3D Risk Management for Hydrogen Installations (HY3DRM)
Oct 2015
Publication
This paper introduces the 3D risk management (3DRM) concept with particular emphasis on hydrogen installations (Hy3DRM). The 3DRM framework entails an integrated solution for risk management that combines a detailed site-specific 3D geometry model a computational fluid dynamics (CFD) tool for simulating flow-related accident scenarios methodology for frequency analysis and quantitative risk assessment (QRA) and state-of-the-art visualization techniques for risk communication and decision support. In order to reduce calculation time and to cover escalating accident scenarios involving structural collapse and projectiles the CFD-based consequence analysis can be complemented with empirical engineering models reduced order models or finite element analysis (FEA). The paper outlines the background for 3DRM and presents a proof-of-concept risk assessment for a hypothetical hydrogen filling station. The prototype focuses on dispersion fire and explosion scenarios resulting from loss of containment of gaseous hydrogen. The approach adopted here combines consequence assessments obtained with the CFD tool FLACS-Hydrogen from Gexcon and event frequencies estimated with the Hydrogen Risk Assessment Models (HyRAM) tool from Sandia to generate 3D risk contours for explosion pressure and radiation loads. For a given population density and set of harm criteria it is straightforward to extend the analysis to include personnel risk as well as risk-based design such as detector optimization. The discussion outlines main challenges and inherent limitations of the 3DRM concept as well as prospects for further development towards a fully integrated framework for risk management in organizations.
Regulations, Codes, and Standards (RCS) for Multi-fuel Motor Vehicle Dispensing Station
Sep 2017
Publication
In the United States requirements for liquid motor vehicle fuelling stations have been in place for many years. Requirements for motor vehicle fuelling stations for gaseous fuels including hydrogen are relatively new. These requirements have in the United States been developed along different code and standards paths. The liquid fuels have been addressed in a single document and the gaseous fuels have been addressed in documents specific to an individual gas. The result of these parallel processes is that multi-fuel stations are subject to requirements in several fuelling regulations codes and standards (RCS). This paper describes a configuration of a multi-fuel motor vehicle fuelling station and provides a detailed breakdown of the codes and standards requirements. The multi-fuel station would dispense what the U.S. Department of Energy defines as the six key alternative fuels: biodiesel electricity ethanol hydrogen natural gas and propane. The paper will also identify any apparent gaps in RCS and potential research projects that could help fill these gaps.
Effect of Initial Turbulence on Vented Explosion Over Pressures from Lean Hydrogen-air Deflagrations
Sep 2013
Publication
To examine the effect of initial turbulence on vented explosions experiments were performed for lean hydrogen–air mixtures with hydrogen concentrations ranging from 12 to 15% vol. at elevated initial turbulence. As expected it was found that an increase in initial turbulence increased the overall flame propagation speed and this increased flame propagation speed translated into higher peak overpressures during the external explosion. The peak pressures generated by flame–acoustic interactions however did not vary significantly with initial turbulence. When flame speeds measurements were examined it was found that the burning velocity increased with flame radius as a power function of radius with a relatively constant exponent over the range of weak initial turbulence studied and did not vary systematically with initial turbulence. Instead the elevated initial turbulence increased the initial flame propagation velocities of the various mixtures. The initial turbulence thus appears to act primarily by generating higher initial flame wrinkling while having a minimal effect on the growth rate of the wrinkles. For practical purposes of modelling flame propagation and pressure generation in vented explosions the increase in burning velocity due to turbulence is suggested to be approximated by a single constant factor that increases the effective burning velocity of the mixture. When this approach is applied to a previously developed vent sizing correlation the correlation performs well for almost all of the peaks. It was found however that in certain situations this approach significantly under predicts the flame–acoustic peak. This suggests that further research may be necessary to better understand the influence of initial turbulence on the development of flame–acoustic peaks in vented explosions.
Accidental Hydrogen Release in Gc-laboratory: A Case Study
Oct 2015
Publication
A 50-litre standard hydrogen gas cylinder was temporarily placed in a laboratory to supply hydrogen gas to a flame ionization detector (FID) for use in gas chromatography (GC). On 20 January 2015 the safety relief valve on the pressure regulator failed and released about 0.34 kg of hydrogen into the laboratory. The gas cloud did not ignite so there was no injury or damage. The results of a full investigation with a complete course of action and reconstruction are presented that verify the cause of the leakage and estimate the gas concentration of the dispersion and gas cloud. A preliminary simulation of the likely explosion is provided. If the gas cloud had ignited the explosion would most likely have caused significant structural damage to doors windows and possibly the walls.
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation.<br/>An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the ""slow burst test SBT"". On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles."
Helios- A New Method for Hydrogen Permeation Test
Sep 2013
Publication
Hydrogen induced cracking is still a severe and current threat for several industrial applications. With the aim of providing a simple and versatile device for hydrogen detection a new instrument was designed based on solid state sensor technology. New detection technique allows to execute hydrogen permeation measurement in short time and without material surface preparation. Thanks to this innovation HELIOS offers a concrete alternative to traditional experimental methods for laboratory permeability tests. In addition it is proposed as a new system for Non Destructive Testing of components in service in hydrogenating environment. Hydrogen flux monitoring is particularly relevant for risk mitigation of elements involved in hydrogen storage and transportation. Hydrogen permeation tests were performed by means of HELIOS instruments both on a plane membrane and on the wall of a gas cylinder. Results confirmed the extreme sensitivity of the detection system and its suitability to perform measurements even on non metallic materials by means of an easy-to-handle instrument.
Evaluation of the Protection Effectiveness Against Overpressure From Hydrogen-air Explosion
Sep 2017
Publication
The aim of this study is to assess the probability of the damage to hydrogen fuelling station personnel exposed to the hydrogen explosion shock wave. A three-dimensional mathematical model of the explosion of hydrogen-air cloud formed after the destruction of the high-pressure storage cylinders is developed. A computer technology how to define the personnel damage probability field on the basis of probit analysis of the generated shock wave is developed. To automate the process of computing the "probit function-damage probability" tabular dependence is replaced by a piecewise cubic spline. The results of calculations of overpressure fields impulse loading and the probability of damage to fuelling station personnel exposed to the shock wave are obtained. The mathematical model takes into account the complex terrain and three-dimensional non-stationary nature of the shock wave propagation process. The model allows to obtain time-spatial distribution of damaging factors (overpressure in the shock wave front and the compression phase impulse) required to determine the three-dimensional non-stationary damage probability fields based on probit analysis. The developed computer technology allows to carry out an automated analysis of the safety situation at the fuelling station and to conduct a comparative analysis of the effectiveness of different types of protective facilities.
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
Risk Assessment and Ventilation Modeling for Hydrogen Vehicle Repair Garages
Sep 2019
Publication
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location behaviour and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. It is shown that position direction and velocity of ventilation have a significant impact on the amount of flammable mass in the domain.
No more items...