Safety
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
Lessons Learned from Safety Events
Sep 2011
Publication
The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety [1] [2]. Since 2009 continuing work has not only highlighted the value of safety lessons learned but enhanced how the database provides access to another safety knowledge tool Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learning’s from around the world. This paper updates recent progress highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting analyzing and using safety event information.
Numerical Simulation of Detonation Failure and Re-initiation in Bifurcated Tubes
Oct 2015
Publication
A numerical approach is developed to simulate detonation propagation attenuation failure and re-initiation in hydrogen–air mixture. The aim is to study the condition under which detonations may fail or re-initiate in bifurcated tubes which is important for risk assessment in industrial accidents. A code is developed to solve compressible multidimensional transient reactive Navier–Stokes equations. An Implicit Large Eddy Simulation approach is used to model the turbulence. The code is developed and tested to ensure both deflagrations (when detonation fails) and detonations are simulated correctly. The code can correctly predict the flame properties as well as detonation dynamic parameters. The detonation propagation predictions in bifurcated tubes are validated against the experimental work of Wang et al. [12] and found to be in good agreement with experimental observations.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Hydrogen and Fuel Cell Vehicles UN Global Technical Regulation No. 13: Latest Updates Reflecting Heavy Duty Vehicles
Sep 2019
Publication
This paper provides a detailed technical description of the United Nations Global Technical Regulation No. 13 (UN GTR #13) 1998 Agreement and contracting party obligations phase 2 activity and safety provisions being discussed and developed for heavy duty hydrogen fuel cell vehicles.
Effect of the Position and the Area of the Vent on the Hydrogen Dispersion in a Naturally Ventilated Cubiod Space with One Vent on the Side Wall
Dec 2021
Publication
The design of ventilation system has implications for the safety of life and property and the development of regulations and standards in the space with the hydrogen storage equipment. The impact of both the position and the area of a single vent on the dispersion of hydrogen in a cuboid space (with dimensions L x W x H ¼ 2.90 0.74 1.22 m) is investigated with Computational Fluid Dynamics (CFD) in this study. Nine positions of the vent were compared for the leakage taking place at the floor to understand the gas dispersion. It was shown a cloud of 1% mole fraction has been formed near the ceiling of the space in less than 40 s for different positions of the vent which can activate hydrogen sensors. The models show that the hydrogen is removed more effectively when the vent is closer to the leakage position in the horizontal direction. The study demonstrates that the vent height of 1.00 m is safer for the particular scenario considered. The area of the vent has little effect on the hydrogen concentration for all vent positions when the area of the vent is less than 0.045 m2 and the height of the vent is less than 0.61 m.
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
Hydrogen-fueled Car Fire Spread to Adjacent Vehicles in Car Parks
Sep 2019
Publication
Car park fires are known to be dangerous due to the risk of fast fire spread from one car to another. In general no fatalities are recorded in such fires but they may have a great cost in relation to damaged cars and structural repair. A very recent example is the Liverpool multi-storey car park fire from December 31 2017. It destroyed 1400 cars and parts of the building structure collapsed. This questions the validity of current design praxis of car parks. Literature studies assumes a 12 minutes period for the fire spread from one gasoline fuelled car to another. Statistical research and test from the European commission of steel structures states that in an open car park at most 3-4 vehicles are expected to be on fire at the same time.<br/>A number of investigations have been made concerning vehicles performance in car park fires but only a few are concerned with hydrogen-fuelled vehicles (HFV). It is therefore important to investigate how these new vehicles may contribute to potential fire spread scenario. The aim of the paper is to report the outcome of car park fire spread simulations involving common fuelled and hydrogen fuelled cars. The case study is based on a typical car park found in Denmark. The simulation applied numerical models implemented in the Fire Dynamic Simulator (FDS). In particular the focus of the study is on the influence of the parking distance to fire spread to adjacent vehicles in case a TPRD is activated during a car fire. The results help understanding whether different design rules should be envisaged for such structures or how a sufficient safety level can be obtained by ensuring specific parking condition for the hydrogen-fuelled cars.
Simulator Development of Virtual Experience and Accident Scenarios of Hydrogen Stations for Safety
Sep 2007
Publication
Nowadays 4 type hydrogen stations have been demonstrated in Korea for preparing hydrogen economy. This simulator is consists of virtual experience modules and virtual accident scenarios of 4 type hydrogen stations. Virtual experience modules show the performance properties through a movie or a virtual reality technology. Also they provide an explanation of hydrogen station equipment and a guide for operators immediately after the accident. Virtual accident scenario modules show accident simulations based on modelling equations as 3D virtual reality. These modules could choose the sham accident for every kind of a station after categorizing all possible accidents in a station A Commercialized CFD program based on hydrogen dispersion model theory shows a movie of accident simulations. The result of a simulator has been developed as web applications. And will be applied to training materials and public relations for a user concerned about hydrogen stations.
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
Dispersion of Cryogenic Hydrogen Through High-aspect Ratio Nozzles
Sep 2019
Publication
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks which would be expected to be cracks rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation the axis-switching phenomena was not observed but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment
Updated Jet Flame Radiation Modelling with Corrections for Buoyancy and Wind
Sep 2013
Publication
Radiative heat fluxes from small to medium-scale hydrogen jet flames (<10 m) compare favorably to theoretical predictions provided the product species thermal emittance and optical flame thickness are corrected for. However recent heat flux measurements from two large-scale horizontally orientated hydrogen flames (17.4 and 45.9 m respectively) revealed that current methods underpredicted the flame radiant fraction by 40% or more. Newly developed weighted source flame radiation models have demonstrated substantial improvement in the heat flux predictions particularly in the near-field and allow for a sensible way to correct potential ground surface reflective irradiance. These updated methods are still constrained by the fact that the flame is assumed to have a linear trajectory despite buoyancy effects that can result in significant flame deformation. The current paper discusses a method to predict flame centerline trajectories via a one-dimensional flame integral model which enables optimized placement of source emitters for weighted multi-source heat flux prediction methods. Flame shape prediction from choked releases was evaluated against flame envelope imaging and found to depend heavily on the notional nozzle model formulation used to compute the density weighted effective nozzle diameter. Nonetheless substantial improvement in the prediction of downstream radiative heat flux values occurred when emitter placement was corrected by the flame integral model regardless of the notional nozzle model formulation used.
Identification and Monitoring of a PEM Electrolyser Based on Dynamical Modelling
Sep 2007
Publication
Hydrogen from water electrolysis associated with renewable energies is one of the most attractive solutions for the green energy storage. To improve the efficiency and the safety of such stations some technological studies are still under investigation both on methods and materials. As methods control monitoring and diagnosis algorithms are relevant tools. These methods are efficient when they use an accurate mathematical model representing the real behaviour of hydrogen production system. This work focuses on the dynamical modelling and the monitoring of Proton Exchange Membrane (PEM) electrolyser. Our contribution consists in three parts: to develop an analytical dynamical PEM electrolyser model dedicated to the control and the monitoring; to identify the model parameters and to propose adequate monitoring tools. The proposed model is deduced from physical laws and electrochemical equations and consists in a steady-state electric model coupled with a dynamical thermal model. The estimation of the model parameters is achieved using identification and data fitting techniques based on experimental measurements. Taking into account the information given by the proposed analytical model and the experimentation data (temperature T voltage U and current I) given by a PEM electrolyser composed of seven cells the model parameters are identified. After estimating the dynamical model model based diagnosis approach is used in order to monitoring the PEM electrolyser and to ensure its safety. We illustrate how our algorithm can detect and isolate faults on actuators on sensors or on electrolyser system.<br/><br/>
Simulation of Shock-Initiated Ignition
Sep 2009
Publication
The scenario of detonative ignition in shocked mixture is significant because it is a contributor to deflagration to detonation transition for example following shock reflections. However even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into a combustible mixture is difficult because of the singular nature of the initial conditions. Initially as the shock starts moving into reactive mixture the region filled with reactive mixture has zero thickness. On a fixed grid the number of grid points between the shock and the contact surface increases as the shock moves away from the latter. Due to initial lack of resolution in the region of interest staircasing may occur whereby the resulting plots consist of jumps between few values a few grid points and these numerical artifacts are amplified by the chemistry which is very sensitive to temperature leading to unreliable results. The formulation is transformed replacing time and space by time and space over time as the independent variables. This frame of reference corresponds to the self-similar formulation in which the non-reactive problem remains stationary and the initial conditions are well-resolved. Additionally a solution obtained from short time perturbation is used as initial condition at a time still short enough for the perturbation to be very accurate but long enough so that there is sufficient resolution. The numerical solution to the transformed problem is obtained using an essentially non-oscillatory algorithm which is adequate not only for the early part of the process but also for the latter part when chemistry leads to appearance of a shock and eventually a detonation wave is formed. A validation study was performed and the results were compared with the literature for single step Arrhenius chemistry. The method and its implementation were found to be effective. Results are presented for values of activation energy ranging from mild to stiff.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
Quantification of the Uncertainty of the Peak Pressure Value in the Vented Deflagrations of Air-Hydrogen Mixtures
Sep 2007
Publication
In the problem of the protection by the consequences of an explosion is actual for many industrial application involving storage of gas like methane or hydrogen refuelling stations and so on. A simple and economic way to reduce the peak pressure associated to a deflagration is to supply to the confined environment an opportune surface substantially less resistant then the protected structure typically in stoichiometric conditions the peak pressure reduction is around the 8 bars for a generic hydrocarbon combustion in an adiabatic system lacking of whichever mitigation system. In general the problem is the forecast of the peak pressure value (PMAX) of the explosion. This problem is faced using CFD codes modelling the structure in which the explosion is located and setting the main parameters like concentration of the gas in the mixture the volume available the size of vent area and obstacles (if included) and so on. In this work the idea is to start from empirical data to train a Neural Network (NN) in order to find the correlation among the parameters regulating the phenomenon. Associated to this prediction a fuzzy model will provide to quantify the uncertainty of the predicted value.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Hydrogen Storage Systems In Typical Garages- Part 3
Sep 2009
Publication
The formation of a flammable hydrogen-air mixture is a major safety concern especially for closed space. This hazardous situation can arise when considering permeation from a car equipped with a composite compressed hydrogen tank with a non-metallic liner in a closed garage. In the following paper a scenario is developed and analysed with a simplified approach and a numerical simulation in order to estimate the evolution of hydrogen concentration. The system is composed of typical size garage and hydrogen car’s tank. Some parameters increasing permeation rate (i.e. tank’s material thickness and pressure) have been chosen to have a conservative approach. A close look on the top of tank surface showed that the concentration grows as square root of time and does not exceed 8.2×10-3 % by volume. Also a simplified comparative analysis estimated that the buoyancy of hydrogen-air mixture prevails on the diffusion 35 seconds after permeation starts in good agreement with simulation where time is at about 80 seconds. Finally the numerical simulations demonstrated that across the garage height the hydrogen is nearly distributed linearly and the difference in hydrogen concentration at the ceiling and floor is negligible (i.e. 3×10-3 %).
Numerical Simulation of Large Scale Hydrogen Detonation
Sep 2009
Publication
The present work is concerned with numerical simulations of large scale hydrogen detonations. Euler equations have been solved along with a single step reaction for the chemistry. Total variation diminishing (TVD) numerical schemes are used for shock capturing. The equations are solved in parallel in a decomposed domain. Predictions were firstly conducted with a small domain to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure and velocity. On this basis simulations were set up for the detonation tests carried out at the RUT tunnel facilities in Russia. This is one of the standard benchmark test cases selected for HYSAFE [1]. Comparison is made between the predictions and measurements. Reasonably good agreement has been obtained on pressure decay and the propagation speed of detonation. Further simulations were then conducted for a hypothetical hydrogen-air cloud in the open to assess the impulse as well as overpressure. The effects of cloud height width were investigated in the safety context.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
No more items...