Safety
Dispersion and Burning Behavior of Hydrogen Released in a Full-scale Residential Garage in the Presence and Absence of Conventional Automobiles
Sep 2011
Publication
Experiments are described in which hydrogen was released at the center of the floor of a real-scale enclosure having dimensions of a typical two-car residential garage. Real-time hydrogen concentrations were monitored at a number of locations. The hydrogen/air mixtures were ignited at pre-determined local volume fractions ranging from 8% to 29%. The combustion behavior and structural effects were monitored using combinations of high-speed pressure transducers and ionization gauges standard thermocouples hydrogen sensors and digital infrared and high-speed video cameras. Experiments were performed both for empty garages and garages with conventional automobiles parked above the hydrogen release location.
Helium Release in A Closed Enclosure- Comparisons Between Simple Models, CFD Calculations And Experimental Results
Sep 2011
Publication
In the prospect of a safe use of hydrogen in our society one important task is to evaluate under which conditions the storage of hydrogen systems can reach a sufficient level of safety. One of the most important issues is the use of such system in closed area for example a private garage or an industrial facility. In the scope of this paper we are mainly interested in the following scenario: a relatively slow release of hydrogen (around 5Nl/min) in a closed and almost cubic box representing either a fuel cell at normal scale or a private garage at a smaller scale. For practical reasons helium was used instead of hydrogen in the experiments on which are based our comparisons. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of either a stably stratified distribution of concentration or the formation of a homogeneous layer due to high enough convective flows at the top of the enclosure. Nevertheless most of them consider the cases of accidental situation in which the flow rate is relatively important (higher than 10Nl/min). Numerical simulations carried out with the CEA code Cast3M and a LES turbulence model confirm the differences of results already observed in experimental helium concentration measurements for a same injection flow rate and two different injection nozzle diameters contradicting simple physical models used in safety calculations.
Cell Failure Mechanisms in PEM Water Electrolyzers
Sep 2011
Publication
PEM water electrolysis offers an efficient and flexible way to produce “green-hydrogen” from renewable (intermittent) energy sources. Most research papers published in the open literature on the subject are addressing performances issues and to date very few information is available concerning the mechanisms of performance degradation and the associated consequences. Results reported in this communication have been used to analyze the failure mechanisms of PEM water electrolysis cells which can ultimately lead to the destruction of the electrolyzer. A two-step process involving firstly the local perforation of the solid polymer electrolyte followed secondly by the catalytic recombination of hydrogen and oxygen stored in the electrolysis compartments has been evidenced. The conditions leading to the onset of such mechanism are discussed and some preventive measures are proposed to avoid accidents.
Hydrogen Fuel-Cell Forklift Vehicle Releases In Enclosed Spaces
Sep 2011
Publication
Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis.
Quantitative Imaging of Multi-Component Turbulent Jets
Sep 2011
Publication
The integration of a hydrogen gas storage arrangement in vehicles has not been without its challenges. Gaseous state of hydrogen at ambient temperature combined with the fact that hydrogen is highly flammable results in the requirement of more robust high pressure storage systems that can meet modern safety standards. To develop these new safety standards and to properly predict the phenomena of hydrogen dispersion a better understanding of the resulting flow structures and flammable region from controlled and uncontrolled releases of hydrogen gas must be achieved. With the upper and lower explosive limits of hydrogen known the flammable envelope surrounding the site of a uncontrolled hydrogen release can be found from the concentration field. In this study the subsonic release of hydrogen was emulated using helium as a substitute working fluid. A sharp orifice round turbulent jet is used to emulate releases in which leak geometry is circular. Effects of buoyancy and crossflow were studied over a wide range of Froude numbers. The velocity fields of turbulent jets were characterized using particle image velocimetry (PIV). The mean and fluctuation velocity components were well quantified to show the effect of buoyancy due to the density difference between helium and the surrounding air. In the range of Froude numbers investigated (Fr = 1000 750 500 250 and 50) the increasing effects of buoyancy were seen to be proportional to the reduction of the Fr number. While buoyancy is experienced to have a negligible effect on centerline velocity fluctuations acceleration due to buoyancy in the other hand resulted in a slower decay of time-averaged axial velocity component along the centerline. The obtained results will serve as control reference values for further concentration measurement study and for computational fluid dynamics (CFD) validation.
Assessment of Safety for Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
A prospective global market share of Electric vehicle (EV) Hybrid electric vehicle (HEV) and Hydrogen Fuel Cell Vehicle (HFCV) is expected to grow due to stringent emission regulation and oil depletion. However it is essential to secure protection against high-pressure hydrogen gas and high-voltage in fuel cell vehicles and thus needs to develop a technique for safety assessment of HFCV. In this experiment 8 research institutes including the Korea Automobile Testing and Research Institute Hyundai Motor Company took part in. This project was supported by the Ministry of Land Transportation and Maritime Affairs of the Republic of Korea.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Single Step Compact Steam Methane Reforming Process for Hydrogen-Cng (H-Cng) Production from Natural Gas
Sep 2011
Publication
Compressed natural gas (CNG) is being increasingly used as a clean transportation fuel. However for further reduction in emissions particularly NOx H-CNG mixture with ~ 20 % hydrogen is recommended. Presently most of the H-CNG mixture is produced by blending hydrogen with CNG. For hydrogen production Steam Methane Reforming (SMR) is a major process accounting for more than 90% of hydrogen production by various industries. In this process natural gas is first reformed to syn gas under severe operating conditions (Pressure 20-30 bar temperature 850-950 deg C) followed by conversion of CO to hydrogen in the shift reactor. Other method of hydrogen production such as electrolysis of water is more expensive. Further there are issues of safety with handling of hydrogen its storage and transportation for blending. In order to overcome these problems a single step compact process for the production of H-CNG gaseous mixture through low severity steam methane reforming of natural gas has been developed. It employs a catalyst containing nickel nickel oxide magnesium oxide and silica and has the capability of producing H-CNG mixture in the desired proportion containing 15-20 vol % hydrogen with nil CO production. The process is flexible and rugged allowing H-CNG production as per the demand. The gaseous H-CNG product mixture can directly be used as automobile fuel after compression. The process can help as important step in safe transition towards hydrogen economy. A demonstration unit is being set up at IOC R&D Centre.
Closing the Regulatory Gaps and Advancing Hydrogen Infrastructure Deployment in Australia
Sep 2019
Publication
With downward trends in Australian equipment manufacturing there are increased numbers of overseas designed manufactured and certified hydrogen systems being introduced into Australia. In parallel there are also opportunities for hydrogen and its carriers to be exported to overseas. Certainty of reputable codes and standards is important to meet regulatory requirements and community safety expectations locally and overseas.
This paper is a progress report of Hydrogen Mobility Australia’s (HMA) Technical Committee on mapping the regulatory codes and standards (RCS) gaps in Australia and establishing a pathway together with Standards Australia and Commonwealth and State Governments. This paper will discuss the benefits of the pathway covering the areas of:
This paper is a progress report of Hydrogen Mobility Australia’s (HMA) Technical Committee on mapping the regulatory codes and standards (RCS) gaps in Australia and establishing a pathway together with Standards Australia and Commonwealth and State Governments. This paper will discuss the benefits of the pathway covering the areas of:
- Safety – Enable Australia to implement consensual rules to minimise avoidable risks to persons and goods to an acceptable level
- Environment – Ensure protection of the environment from unacceptable damage due to the operation and effects of products processes and services linked to hydrogen
- Elimination of barriers to trade – Provide consistency between international jurisdictions enabling streamlined entry of hydrogen related equipment from overseas
- Upskilling of Australian industry participants – Gain useful learnings from countries more advanced in their progress in implementing ISO standards and hydrogen sector development
Experimental Study of the Concentration Build-Up Regimes in an Enclosure Without Ventilation
Sep 2011
Publication
We present an experimental investigation of the different concentration build-up regimes encountered during a release of helium/air mixture in an empty enclosure without ventilation. The release is a vertical jet issuing from a nozzle located near the floor. The nozzle diameter the flow rate and the composition of the injected mixture have been varied such that the injection Richardson number ranges from 6 × 10−6 to 190. The volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 2 × 10−3 to 2 × 104. This wide range allowed reaching three distinct regimes: stratified stratified with a homogeneous upper layer and homogenous.
Safety of Hydrogen and Natural Gas Mixtures by Pipelines- ANR French Project Hydromel
Sep 2011
Publication
In order to gain a better understanding of hazards linked with Hydrogen/Natural gas mixtures transport by pipeline the National Institute of Industrial Environment and Risks (INERIS) alongside with the Atomic Energy Commission (CEA) the industrial companies Air Liquide and GDF SUEZ and the French Research Institutes ICARE and PPRIME (CNRS) have been involved in a project called HYDROMEL. This project was partially funded by the French National Research Agency (ANR) in the framework of its PAN-H program aimed at promoting the R&D activities related to the hydrogen deployment. Firstly the project partners investigated how a NG/H2 mixture may influence the modelling of a hazard scenario i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential of danger. Therefore it was necessary to build an experimental database of physics properties for mixtures. Secondly effect distances in accidental scenarios that could happen on pipelines have been calculated with existing models adapted to the mixtures. This part was preceded by a benchmark exercise between all partners models and experimental results found in the literature. Finally the consortium wrote a good practice guideline for modelling the effects related to the release of natural gas /hydrogen mixture?. The selected models and their comparison with data collected in the literature as well as the experimental results of this project and the main conclusions of the guidelines are presented in this paper.
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
High-Order Perturbation Solutions to a Lh2 Spreading Model With Continuous Spill
Sep 2011
Publication
High-order perturbation solutions have been obtained for the simple physical model describing the LH2 spreading with a continuous spill and are shown to improve over the first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the second-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume; however there is still a difference between numerical solutions and second-order solutions in the late stage of spread. Finally it is revealed that the third-order solutions almost agree with numerical solutions.
New China National Standard on Safety of Hydrogen Systems- Keys for Understanding and Use
Sep 2011
Publication
Development of regulations codes and standards on hydrogen safety is a primary ingredient in overcoming barriers to widespread use of hydrogen energy. Key points of the new China National Standard Essential safety requirements for hydrogen systems metal hydrogen compatibility and risk control of flammability and explosion are discussed. Features of the new standard such as safety requirements for slush hydrogen systems and solid state hydrogen storage systems and introductions for hydrogen production by renewable energy are analyzed in this paper.
Combustion Modeling in Large Scale Volumes
Sep 2013
Publication
This paper is devoted to a benchmarking exercise of the EUROPLEXUS code against several large scale deflagration and detonation experimental data sets in order to improve its hydrogen combustion modeling capabilities in industrial settings. The code employs an algorithm for the propagation of reactive interfaces RDEM which includes a combustion wave as an integrable part of the Reactive Riemann problem propagating with a fundamental flame speed (being a function of initial mixture properties as well as gas dynamics parameters). An improvement of the combustion model is searched in a direction of transient interaction of flames with regions of elevated vorticity/shear in obstacle-laden channels and vented enclosures.
Risk Analysis on Mobile Hydrogen Refueling Stations in the World Expo Shanghai
Sep 2013
Publication
During the World Expo Shanghai there were one hundred fuel-cell sight-seeing cars in operation at the Expo Site. The sight-seeing cars were not allowed to drive out of the Expo Site and the stationary hydrogen refuelling station was not permitted to build at the Expo Site for the sake of safety. A flexible solution to refuel the cars was the application of mobile hydrogen refuelling stations. To better understand the hazards and risks associated with the mobile hydrogen refueling stations a risk analysis was preformed to improve the safety of the operations. The risks to the station personnel and to the public were discussed separately. Results show that the stationary risks of the mobile stations to the personnel and refueling customers are lower than the risk acceptance criteria over an order of magnitude so occupational risks and risks to customers are completely acceptable. The third party risks can be acceptable as long as the appropriate mitigation measures are implemented especially well designed parking area and operation time. Leak from boosters is the main risk contributor to the stationary risks because of its highest failure rates according to the generic data and its worst harm effects based on the consequence evaluations. As for the road risks of the mobile stations they can be acceptable as long as the appropriate mitigation measures are implemented especially well-designed moving path and transportation time.
Unattended Hydrogen Vehicle Fueling Challenges and Historical Context
Sep 2019
Publication
Hydrogen fuelling in the US is unattended activity although this precedent is not without several challenges that have been addressed in the past decade. This paper provides the recent history and the generic safety case which has established this precedent for hydrogen. The paper also explores the longer history of unattended gasoline fuelling and attempts to help place hydrogen fuelling into the longer history of fuelling personal vehicles.
Effect of Temperature on Laminar Flame Velocity for Hydrogen-air Mixtures at Reduced Pressures
Sep 2013
Publication
The work was done with respect to hydrogen safety of ITER vacuum vessel in cases of loss of cooling and loss of vacuum accidents. Experiments were conducted at sub-atmospheric pressures from 1 bar to 200 mbar and elevated temperatures up to 300 oC. Hydrogen concentration was changed from lower to upper flammability limits in all the range of pressures and temperatures. The experiments were performed in a spherical explosion bomb equipped with two quartz windows. The flame propagation velocity was measured using pressure method and high speed shadow cinematography. The theoretical flame velocities were calculated by Cantera code using Lutz and Mueller mechanisms. The influence of the initial temperature and pressure conditions on the laminar flame speed SL overall reaction order n and Markstein length LM are presented in this work and compared with the results of a theoretical model.
Safety Code Equivalencies in Hydrogen Infrastructure Deployment
Sep 2019
Publication
Various studies and market trends show that the number of hydrogen fuelling stations will increase to the thousands in the US by 2050. NFPA 2 Hydrogen Technologies Code (NFPA2) the nationally adopted primary code governing hydrogen safety is relatively new and hydrogen vehicle technology is a relatively new and rapidly developing technology. In order to effectively aid and accelerate the deployment of standardized retail hydrogen fuelling facilities the permitting of hydrogen fuelling stations employing outdoor bulk liquid storage in the state of California.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
No more items...