Production & Supply Chain
Renewable Power-to-Gas: A Technological and Economic Review
Aug 2015
Publication
The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX high efficiency and high flexibility. Three water electrolysis technologies are considered: alkaline electrolysis PEM electrolysis and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future especially if heat sources are available. Several different reactor concepts can be used for the methanation reaction. For catalytic methanation typically fixed-bed reactors are used; however novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures. Finally the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO2 sources the dynamic behaviour of the individual process steps and especially the economics as well as the efficiency.
Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System
Jan 2023
Publication
Green hydrogen production is essential to meeting the conference of the parties’ (COP) decarbonization goals; however this method of producing hydrogen is not as cost-effective as hydrogen production from fossil fuels. This study analyses an off-grid photovoltaic energy system designed to feed a proton-exchange membrane water electrolyzer for hydrogen production to evaluate the optimal electrolyzer size. The system has been analyzed in Baghdad the capital of Iraq using experimental meteorological data. The 12 kWp photovoltaic array is positioned at the optimal annual tilt angle for the selected site. The temperature effect on photovoltaic modules is taken into consideration. Several electrolyzers with capacities in the range of 2–14 kW were investigated to assess the efficiency and effectiveness of the system. The simulation process was conducted using MATLAB and considering the project life span from 2021 to 2035. The results indicate that various potentially cost-competitive alternatives exist for systems with market combinations resembling renewable hydrogen wholesale. It has been found that the annual energy generated by the analyzed photovoltaic system is 18892 kWh at 4313 operating hours and the obtained hydrogen production cost ranges from USD 5.39/kg to USD 3.23/kg. The optimal electrolyzer capacity matches a 12 kWp PV system equal to 8 kW producing 37.5 kg/year/kWp of hydrogen for USD 3.23/kg.
Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming
Nov 2020
Publication
To efficiently convert and utilize intermittent solar energy a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 ◦C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 ◦C and 0.01 bar while the highest first-law efficiency solar-to-fuel efficiency and exergy efficiency are 82.3% 45.3% and 70.4% at 215 ◦C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2 ·h −1 and 247 g·m−2 ·h −1 at 200 ◦C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2 ·h −1 . This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Ammonia as a Carrier for Hydrogen Production by using Lanthanum Based Perovskites
Sep 2021
Publication
LaNiO3 and LaCoO3 perovskites synthesized by self-combustion were characterised and studied in the ammonia decomposition reaction for obtaining hydrogen. Both the fuel to metal nitrates molar ratio and calcination temperature were found to be crucial to synthesize perovskites by self-combustion. Moreover generating non-precursor species during synthesis and small metal size were two factors which significantly influenced catalytic activity. Hence with a citric acid to metal nitrates molar ratio equal to one a LaNiO3 perovskite was obtained with suitable physicochemical properties (specific surface area lower impurities and basicity). In addition a lower calcination temperature (650 ◦C) resulted in small and well-dispersed Ni0 crystallite size after reduction which in turn promoted the catalytic transformation of ammonia into hydrogen. For cobalt perovskites calcination temperature below 900 ◦C did not have a significant influence on the size of the metallic cobalt crystallite size. The nickel and cobalt perovskite-derived catalysts calcined at 650 ◦C and 750 ◦C respectively yielded excellent H2 production from ammonia decomposition. In particular at 450 ◦C almost 100% of the ammonia was converted over the LaNiO3 under study. Furthermore these materials displayed admirable performance and stability after one day of reaction.
Cotton Stalk Activated Carbon-supported Co–Ce–B Nanoparticles as Efficient Catalysts for Hydrogen Generation Through Hydrolysis of Sodium Borohydride
Nov 2019
Publication
Porous cotton stalk activated carbons (CSAC) were prepared by phosphoric acid activation of cotton stalks in a fluidized bed. The CSAC-supported Co–B and Co–Ce–B catalysts were prepared by the impregnation-chemical reduction method. The samples were characterized by the nitrogen adsorption XRD FTIR and TEM measurements. The effects of the sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations reaction temperature and recyclability on the rate of NaBH4 hydrolysis over the CSAC-supported Co–Ce–B catalysts were systematically investigated. The results showed that the agglomeration of the Co–Ce–B nanoclusters on the CSAC support surface was significantly reduced with the introduction of cerium. The CSAC-supported Co–Ce–B catalyst exhibited superior catalytic activity and the average hydrogen generation rate was 16.42 L min−1 g−1 Co at 25°C which is higher than the most reported cobalt-based catalysts. The catalytic hydrolysis of NaBH4 was zero order with respect to the NaBH4 concentration and the hydrogen generation rate decreased with the increase in the NaOH concentration. The activation energy of the hydrogen generation reaction on the prepared catalyst was estimated to be 48.22 kJ mol−1. A kinetic rate equation was also proposed.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
The Use of Strontium Ferrite in Chemical Looping Systems
May 2020
Publication
This work reports a detailed chemical looping investigation of strontium ferrite (SrFeO3−δ) a material with the perovskite structure type able to donate oxygen and stay in a nonstoichiometric form over a broad range of oxygen partial pressures starting at temperatures as low as 250°C (reduction in CO measured in TGA). SrFeO3−δ is an economically attractive simple but remarkably stable material that can withstand repeated phase transitions during redox cycling. Mechanical mixing and calcination of iron oxide and strontium carbonate was evaluated as an effective way to obtain pure SrFeO3−δ. In–situ XRD was performed to analyse structure transformations during reduction and reoxidation. Our work reports that much deeper reduction from SrFeO3−δ to SrO and Fe is reversible and results in oxygen release at a chemical potential suitable for hydrogen production. Thermogravimetric experiments with different gas compositions were applied to characterize the material and evaluate its available oxygen capacity. In both TGA and in-situ XRD experiments the material was reduced below δ=0.5 followed by reoxidation either with CO2 or air to study phase segregation and reversibility of crystal structure transitions. As revealed by in-situ XRD even deeply reduced material regenerates at 900°C to SrFeO3−δ with a cubic structure. To investigate the catalytic behaviour of SrFeO3−δ in methane combustion experiments were performed in a fluidized bed rig. These showed SrFeO3−δ donates O2 into the gas phase but also assists with CH4 combustion by supplying lattice oxygen. To test the material for combustion and hydrogen production long cycling experiments in a fluidized bed rig were also performed. SrFeO3−δ showed stability over 30 redox cycles both in experiments with a 2-step oxidation performed in CO2 followed by air as well as a single step oxidation in CO2 alone. Finally the influence of CO/CO2 mixtures on material performance was tested; a fast and deep reduction in elevated pCO2 makes the material susceptible to carbonation but the process can be reversed by increasing the temperature or lowering pCO2.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Power-to-Gas: Electrolysis and Methanation Status Review
Jun 2019
Publication
This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed recent and planned projects since 1988 which were evaluated with regards to plant allocation installed power development plant size shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050.<br/>The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany Denmark the United States of America and Canada. Following an exponential global trend to increase installed power today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects.
The Global Status of CCS 2020: Vital to Achieve Net Zero
Dec 2020
Publication
The Global Status of CCS Report 2020 demonstrates the vital role of carbon capture and storage technologies (CCS) in reducing emissions to net-zero by 2050 as well as documenting the current status and important milestones for the technology over the past 12 months.<br/>The report provides detailed information on and analyses of the global CCS facility pipeline international policy perspectives CO2 storage and the CCS legal and regulatory environment.<br/>In addition four regional updates provide further detail about CCS progress across the Americas Europe Asia Pacific and the Gulf Cooperation Council States and a Technology section provides updates on key innovations and applications of CCS.
Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software - Ansys Chemkin-Pro
Nov 2019
Publication
There can be observed global interest in waste pyrolysis technology due to low costs and availability of raw materials. At the same time there is a literature gap in forecasting environmental effects of thermal waste treatment installations. In the article was modelled the chemical composition of pyrolysis gas with main focus on the problem in terms of environmental hazards. Not only RDF fuel was analysed but also selected waste fractions included in its composition. This approach provided comprehensive knowledge about the chemical composition of gaseous pyrolysis products which is important from the point of view of the heterogeneity of RDF fuel. The main goal of this article was to focus on the utilitarian aspect of the obtained calculation results. Final results can be the basis for estimating ecological effects both for existing and newly designed installations.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Pyrolysis process was modelled using Ansys Chemkin-Pro software. The investigation of the process were carried out for five different temperatures (700 750 800 850 and 900 °C). As an output the mole fraction of H2 H2O CH4 C2H2C2H4 C3H6 C3H8 CO CO2 HCl and H2S were presented. Additionally the reaction pathways for selected material were presented.
Based on obtained results it was established that the residence time did not influenced on the concentration of products contrary to temperature. The chemical composition of pyrolytic gas is closely related to wastes origin. The application of Chemkin-Pro allowed the calculation of formation for each products at different temperatures and formulation of hypotheses on the reaction pathways involved during pyrolysis process. Further based on the obtained results confirmed the possibilities of using pyrolysis gas from RDF as a substitute for natural gas in energy consumption sectors. Optimization of the process can be conducted with low financial outlays and reliable results by using calculation tools. Moreover it can be predicted negative impact of obtained products on the future installation.
Interfacial Confinement of Ni-V2O3 in Molten Salts for Enhanced Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3.electrodes consisting of nanostrip-like V2O3.perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3.accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H* for generating H2.
Thermodynamic Assessment of the Novel Concept of the Energy Storage System Using Compressed Carbon Dioxide, Methanation and Hydrogen Generator
Jul 2021
Publication
The main aim of this paper is to characterize the concept of a novel energy storage system based on compressed CO2 storage installation that uses an infrastructure of depleted coal mines to provide required volume of tanks and additionally hydrogen generators and a methanation installation to generate synthetic natural gas that can be used within the system or taken out of it e.g. to a gas grid. A detailed mathematical model of the proposed solution was built using own codes and Aspen Plus software. Thermodynamic evaluation aiming at determining parameters composition and streams in all the most important nodes of the system for the nominal point and when changing a defined decision variable δ (in the range from 0.1 to 0.9) was made. The evaluation was made based on the storage efficiency volume of the tanks and flows of energy within the system. The storage efficiency in the nominal point reached 45.08% but was changing in the range from 35.06% (for δ = 0.1) to 63.93% (for δ = 0.9). For the nominal value of δ equal to 0.5 volume of the low-pressure tank (LPT) was equal to 132869 m3 while of the high pressure tank (HPT) to 1219 m3 . When changing δ these volumes were changing from 101900 m3 to 190878 m3 (for LPT) and from 935 to 1751 m3 (for HPT) respectively. Detailed results are presented in the paper and indicate high storage potential of the proposed solution in regions with underground mine infrastructure.
Self-sustainable Protonic Ceramic Electrochemical cells Using a Triple Conducting Electrode for Hydrogen and Power Production
Apr 2020
Publication
The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions which are the critical steps for both electrolysis and fuel cell operation especially at reduced temperatures. In this study a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode presenting superior electrochemical performance at 400~600 °C. More importantly the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction as confirmed by hydrogen permeation experiment remarkable hydration behavior and computations.
Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports
Nov 2015
Publication
CeO2- ZrO2- and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2 which showed the best performance in the stability test also produced the highest H2 yield above 600 °C followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM XPS and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
Pyrolysis-gasification of Wastes Plastics for Syngas Production Using Metal Modified Zeolite Catalysts Under Different Ratio of Nitrogen/Oxygen
Jun 2020
Publication
The aim of this study was the syngas production by the gasification of plastic waste (polyethylene polypropylene and terephthalate polyethylene). Ca Ce La Mg and Mn were used to promote the Ni/ZSM-5 catalyst in order to enhance the production of higher syngas yield. The modified catalysts can enhanced the reaction rate of the pyrolysis process and resulting in high syngas in the product yields. Especially cerium lanthanum promoted catalysts can enhance the yield of syngas. The effect of the reaction temperature and nitrogen/oxygen ratio of the carrier gas was also investigated. The maximum syngas production was obtained with lanthanum catalyst (112.2 mmol/g (95%N2 and 5%O2) and 130.7 mmol/g (90%N2 and 10%O2) at 850 °C. Less carbon depositions was found at 850 °C or even by the using of catalyst and more oxygen in the carrier gas. The oxygen content of the pyrolysis-gasification atmosphere had a key role to the syngas yield and affects significantly the carbon-monoxide/carbon-dioxide ratio. Catalysts can also accelerate the methanization reactions and isomerize the main carbon frame. Increasing in both temperature and oxygen in the atmosphere led to higher n-paraffin/n-olefin ratio and more multi-ring aromatic hydrocarbons in pyrolysis oils. The concentration of hydrocarbons containing oxygen and branched compounds was also significantly affected by catalysts.
Storable Energy Production from Wind over Water
Apr 2020
Publication
The current status of a project is described which aims to demonstrate the technical and economic feasibility of converting the vast wind energy available over the globe’s oceans and lakes into storable energy. To this end autonomous high-performance sailing ships are equipped with hydrokinetic turbines whose output is stored either in electric batteries or is fed into electrolysers to produce hydrogen which then is compressed and stored in tanks. In the present paper the previous analytical studies which showed the potential of this “energy ship concept” are summarized and progress on its hardware demonstration is reported involving the conversion of a model sailboat to autonomous operation. The paper concludes with a discussion of the potential of this concept to achieve the IPCC-mandated requirement of reducing the global CO2 emissions by about 45% by 2030 reaching net zero by 2050.
Graphene Oxide @ Nickel Phosphate Nanocomposites for Photocatalytic Hydrogen Production
Mar 2021
Publication
The graphene oxide @nickel phosphate (GO:NPO) nanocomposites (NCs) are prepared by using a one-pot in-situ solar energy assisted method by varying GO:NPO ratio i.e. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 and 2.00 without adding any surfactant or a structure-directing reagent. As produced GO:NPO nanosheets exhibited an improved photocatalytic activity due to the spatial seperation of charge carriers through interface where photoinduced electrons transferred from NiPO4 to the GO sheets without charge-recombination. Out of the series the system 1.00 GO:NPO NC show the optimum hydrogen production activity (15.37 μmol H2 h−1) towards water splitting under the visible light irradiation. The electronic environment of the nanocomposite GO-NiO6/NiO4-PO4 elucidated in the light of advance experimental analyses and theoretical DFT spin density calculations. Structural advanmcement of composites are well correlated with their hydrogen production activity.
Direct Conversion of CO2 to Dimethyl Ether in a Fixed Bed Membrane Reactor: Influence of Membrane Properties and Process Conditions
Jun 2021
Publication
The direct hydrogenation of CO2 to dimethyl ether (DME) is a promising technology for CO2 valorisation. In this work a 1D phenomenological reactor model is developed to evaluate and optimize the performance of a membrane reactor for this conversion otherwise limited by thermodynamic equilibrium and temperature gradients. The co-current circulation of a sweep gas stream through the permeation zone promotes both water and heat removal from the reaction zone thus increasing overall DME yield (from 44% to 64%). The membrane properties in terms of water permeability (i.e. 4·10−7 mol·Pa−1m−2s−1) and selectivity (i.e. 50 towards H2 30 towards CO2 and CO 10 towards methanol) for optimal reactor performance have been determined considering for the first time non-ideal separation and non-isothermal operation. Thus this work sheds light into suitable membrane materials for this applications. Then the non-isothermal performance of the membrane reactor was analysed as a function of the process parameters (i.e. the sweep gas to feed flow ratio the gradient of total pressure across the membrane the inlet temperature to the reaction and permeation zone and the feed composition). Owing to its ability to remove 96% of the water produced in this reaction the proposed membrane reactor outperforms a conventional packed bed for the same application (i.e. with 36% and 46% improvement in CO2 conversion and DME yield respectively). The results of this work demonstrate the potential of the membrane reactor to make the CO2 conversion to DME a feasible process.
Hydrogen Generation from Wood Chip and Biochar by Combined Continuous Pyrolysis and Hydrothermal Gasification
Jun 2021
Publication
Hydrothermal gasification (HTG) experiments were carried out to extract hydrogen from biomass. Although extensive research has been conducted on hydrogen production with HTG limited research exists on the use of biochar as a raw material. In this study woodland residues (wood chip) and biochar from wood-chip pyrolysis were used in HTG treatment to generate hydrogen. This research investigated the effect of temperature (300–425 °C) and biomass/water (0.5–10) ratio on gas composition. A higher temperature promoted hydrogen production because the water–gas shift reaction and steam-reforming reaction were promoted with an increase in temperature. The methane concentration was related positively to temperature because of the methanation and hydrogenation reactions. A lower biomass/water ratio promoted hydrogen production but suppressed carbon-monoxide production. Most reactions that produce hydrogen consume water but water also affects the water–gas shift reaction balance which decreases the carbon-monoxide concentration. By focusing on the practical application of HTG we attempted biochar treatment by pyrolysis (temperature of heating part: 700 °C) and syngas was obtained from hydrothermal treatment above 425 °C.
Synthetic Natural Gas Production from CO2 and Renewable H2: Towards Large-scale Production of Ni–Fe Alloy Catalysts for Commercialization
Apr 2020
Publication
Synthetic natural gas (SNG) is one of the promising energy carriers for the excessive electricity generated from variable renewable energy sources. SNG production from renewable H2 and CO2 via catalytic CO2 methanation has gained much attention since CO2 emissions could be simultaneously reduced. In this study Ni–Fe/(MgAl)Ox alloy catalysts for CO2 methanation were prepared via hydrotalcite precursors using a rapid coprecipitation method. The effect of total metal concentration on the physicochemical properties and catalytic behavior was investigated. Upon calcination the catalysts showed high specific surface area of above 230 m2 g−1. Small particle sizes of about 5 nm were obtained for all catalysts even though the produced catalyst amount was increased by 10 times. The catalysts exhibited excellent space-time yield under very high gas space velocity (34000 h−1) irrespective of the metal concentration. The CO2 conversions reached 73–79% at 300 °C and CH4 selectivities were at 93–95%. Therefore we demonstrated the potential of large-scale production of earth-abundant Ni–Fe based catalysts for CO2 methanation and the Power-to-Gas technology.
Power-to-gas for Injection into the Gas Grid: What Can We Learn from Real-life Projects, Economic Assessments and Systems Modelling
Sep 2018
Publication
Power-to-gas is a key area of interest for decarbonisation and increasing flexibility in energy systems as it has the potential both to absorb renewable electricity at times of excess supply and to provide backup energy at times of excess demand. By integrating power-to-gas with the natural gas grid it is possible to exploit the inherent linepack flexibility of the grid and shift some electricity variability onto the gas grid. Furthermore provided the gas injected into the gas grid is low-carbon such as hydrogen from renewable power-to-gas then overall greenhouse gas emissions from the gas grid can be reduced.<br/>This work presents the first review of power-to-gas to consider real-life projects economic assessments and systems modelling studies and to compare them based on scope assumptions and outcomes. The review focuses on power-to-gas for injection into the gas grid as this application has specific economic technical and modelling opportunities and challenges.<br/>The review identified significant interest in and potential for power-to-gas in combination with the gas grid however there are still challenges to overcome to find profitable business cases and manage local and system-wide technical issues. Whilst significant modelling of power-to-gas has been undertaken more is needed to fully understand the impacts of power-to-gas and gas grid injection on the operational behaviour of the gas grid taking into account dynamic and spatial effects.
EU Hydrogen Strategy: A Case for Urgent Action Towards Implementation
Jul 2020
Publication
Interest in hydrogen as one route to the decarbonisation of energy systems has risen rapidly over the past few years with the publication of a number of hydrogen strategies from countries across the global energy economy. The momentum in Europe has increased sharply this month with the publication of an EU strategy to incorporate hydrogen into its plans for a net zero emission future. This Comment reviews the key elements of this strategy and provides an initial commentary on the main goals. We highlight the challenges that will be faced in meeting hydrogen production targets in particular via the “green hydrogen” route and analyse the plans for expanding the consumption of hydrogen in Europe. We also assess the infrastructure questions that will need to be answered if and when hydrogen takes on a greater role in the region and note the extensive state support that will be needed in the early years of the implementation of the strategy. Despite this though we applaud the ambition laid out by the EU and look forward to the provision of more detailed plans over the coming months and years.
Link to document on OIES website
Link to document on OIES website
Hollow Cobalt Sulfide Nanocapsules for Electrocatalytic Selective Transfer Hydrogenation of Cinnamaldehyde with Water
Feb 2021
Publication
Designing nanostructured electrocatalysts for selective transfer hydrogenation of α β-unsaturated aldehydes with water as the hydrogen source is highly desirable. Here a facile self-templating strategy is designed for the synthesis of CoS2 and CoS2-x nanocapsules (NCs) as efficient cathodes for selective transfer hydrogenation of cinnamaldehyde a model α β-unsaturated aldehyde. The hollow porous structures of NCs are rich in active sites and improve mass transfer resulting in high turnover frequency. The specific adsorption of the styryl block on pristine CoS2 NCs is conducive to the selective formation of half-hydrogenated hydrocinnamaldehyde with 91.7% selectivity and the preferential adsorption of the C = O group induced by sulfur vacancies on defective CoS2-x NCs leads to the full-hydrogenated hydrocinnamyl alcohol with 92.1% selectivity. A cross-coupling of carbon and hydrogen radicals may be involved in this electrochemical hydrogenation reaction. Furthermore this selective hydrogenation method is also effective for other α β-unsaturated aldehydes illustrating the universality of the method.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Laser Induced Hydrogen Emission from Ethanol with Dispersed Graphene Particles
Apr 2021
Publication
Efficient hydrogen emission from ethanol with disperse graphene foam particles by using a continuous wave infrared laser diode is reported. The products of ethanol dissociation - hydrogen methane and carbon oxide were measured using mass spectrometry. It was found that the most efficient generation of hydrogen was observed when graphene particles were irradiated by a focused laser beam proceeded at the surface of ethanol solution. The process was assisted by intense white light emission resulting from the laser induced multiphoton ionization of graphene combined with the simultaneous emission of hot electrons. The hot electron emission enables the efficient dissociation of ethanol molecules located close to the solution surface with graphene foam particles.
Comprehensive Study on Hydrogen Production via Propane Steam Reforming Inside a Reactor
Feb 2021
Publication
In the proton exchange membrane fuel cells the required hydrogen must be produced in some way. The power generators in the path of these fuel cells generally include a steam reactor that through other fuels provides the needed energy to produce hydrogen. This study investigates a steam reactor powered by propane fuel consisting of a shell and tube heat exchanger. The shell contains a catalyst that receives the mixture of propane and steam and the tubes embedded inside the reformer contain hot gases that provide a suitable substrate for the reaction. Velocity and temperature fields inside the reformer species concentration control and reaction rate are studied. The conversion of reactants and yield of products are investigated according to the reaction rate. The results show that the hydrogen production yield can vary from 77.5 % to 92.2 %. The reaction rate can be controlled by the velocity and temperatures of the hot gases. However for the T=900 K full propane consumption is achieved at the reformer outlet.
A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors
Dec 2022
Publication
Global demand for alternative renewable energy sources is increasing due to the consumption of fossil fuels and the increase in greenhouse gas emissions. Hydrogen (H2 ) from biomass gasification is a green energy segment among the alternative options as it is environmentally friendly renewable and sustainable. Accordingly researchers focus on conducting experiments and modeling the reforming reactions in conventional and membrane reactors. The construction of computational fluid dynamics (CFD) models is an essential tool used by researchers to study the performance of reforming and membrane reactors for hydrogen production and the effect of operating parameters on the methane stream improving processes for reforming untreated biogas in a catalyst-fixed bed and membrane reactors. This review article aims to provide a good CFD model overview of recent progress in catalyzing hydrogen production through various reactors sustainable steam reforming systems and carbon dioxide utilization. This article discusses some of the issues challenges and conceivable arrangements to aid the efficient generation of hydrogen from steam reforming catalytic reactions and membrane reactors of bioproducts and fossil fuels.
Modulating Electronic Structure of Metal-organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution
Mar 2021
Publication
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy yet still challenging. Herein we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF leading to the optimization of binding strength for H2O and H* and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Membrane-Based Electrolysis for Hydrogen Production: A Review
Oct 2021
Publication
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review various types of water splitting technologies and membrane selection for electrolyzers are discussed. We highlight the basic principles recent studies and achievements in membrane-based electrolysis for hydrogen production. Previously the NafionTM membrane was the gold standard for PEM electrolyzers but today cheaper and more effective membranes are favored. In this paper CuCl–HCl electrolysis and its operating parameters are summarized. Additionally a summary is presented of hydrogen production by water splitting including a discussion of the advantages disadvantages and efficiencies of the relevant technologies. Nonetheless the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore herein we address the challenges prospects and future trends in this field of research and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles
Jun 2016
Publication
Recent advances on synthesis characterization and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd90Rh10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions as suggested by in situ X-ray diffraction (XRD). Apart from this composition common laboratory techniques such as in situ XRD DSC and PCI failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd75Rh25 and Pd50Rh50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover the hydrogen solubility in these solid solutions is higher with increasing Pd content and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd25Rh75 and Pd10Rh90) only adsorb hydrogen on the developed surface of ultrasmall nanoparticles. In summary in situ characterization techniques carried out at large-scale facilities are unique and powerful tools for in-depth investigation of hydrogen interaction with ultrasmall nanoparticles at local level.
How Do Dissolved Gases Affect the Sonochemical Process of Hydrogen Production: An Overview of Thermodynamic and Mechanistic Effects – On the “Hot Spot Theory”
Dec 2020
Publication
Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water namely the radical attack of H2O and H2O2 and the free radicals recombination several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas i.e. N2 O2 Ar and air may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects i.e. dynamics of bubble oscillation and collapse events if any against indirect chemical effects i.e. the chemical reactions of free radicals formation and consequently hydrogen emergence it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.
Enhanced Hydrogen Generation from Hydrolysis of MgLi Doped with Expanded Graphite
Apr 2021
Publication
Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H2 release enabling efficient loading discharge and utilization of hydrogen in portable electronic devices. At present work the hydrogen generation properties of MgLi-graphite composites were evaluated for the first time. The MgLi-graphite composites with different doping amounts of expanded graphite (abbreviated as EG hereinafter) were synthesized through ball milling and the hydrogen behaviors of the composites were investigated in chloride solutions. Among the above doping systems the 10 wt% EG-doped MgLi exhibited the best hydrogen performance in MgCl2 solutions. In particular the 22 h-milled MgLi-10 wt% EG composites possessed both desirable hydrogen conversion and rapid reaction kinetics delivering a hydrogen yield of 966 mL H2 g−1 within merely 2 min and a maximum hydrogen generation rate of 1147 mL H2 min−1 g−1 as opposed to the sluggish kinetics in the EG-free composites. Moreover the EG-doped MgLi showed superior air-stable ability even under a 75 RH% ambient atmosphere. For example the 22 h-milled MgLi-10 wt% EG composites held a fuel conversion of 89% after air exposure for 72 h rendering it an advantage for Mg-based materials to safely store and transfer in practical applications. The similar favorable hydrogen performance of MgLi-EG composites in (simulate) seawater may shed light on future development of hydrogen generation technologies.
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolysis products gas composition and gas properties. The results show that increasing the residence time decreased the solid and liquid products but increased gas products. Longer residence times could promote tar cracking and gas-phase conversion reactions and improve the syngas yield H2/CO ratio and carbon conversion. The nano-NiO/A12O3 exhibits excellent catalytic activity for tar removal with a tar conversion rate of 93% at 800 ◦C. The high catalytic temperature could significantly improve H2 and CO yields by enhancing the decomposition of tar and gas-phase reactions between CO2 and CH4 . The increasing catalytic temperature increases the dry gas yield and carbon conversion but decreases the H2/CO ratio and low heating value.
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study modifying parameters such as temperature the mass of the catalyst stirring speed and concentration of base in order to find the optimal conditions of reaction which allow performing the test in a kinetically limited regime.
Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP3 Nanowall Arrays for Boosting Hydrogen Production
Jun 2021
Publication
To address the challenge of highly efficient water splitting into H2 successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough curly and porous structures which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2 which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.
A Tale of Two Phase Diagrams Interplay of Ordering and Hydrogen Uptake in Pd–Au–H
Apr 2021
Publication
Due to their ability to reversibly absorb/desorb hydrogen without hysteresis Pd–Au nanoalloys have been proposed as materials for hydrogen sensing. For sensing it is important that absorption/desorption isotherms are reproducible and stable over time. A few studies have pointed to the influence of short and long range chemical order on these isotherms but many aspects of the impact of chemical order have remained unexplored. Here we use alloy cluster expansions to describe the thermodynamics of hydrogen in Pd–Au in a wide concentration range. We investigate how different chemical orderings corresponding to annealing at different temperatures as well as different external pressures of hydrogen impact the behavior of the material with focus on its hydrogen absorption/desorption isotherms. In particular we find that a long-range ordered L12 phase is expected to form if the H2 pressure is sufficiently high. Furthermore we construct the phase diagram at temperatures from 250 K to 500 K showing that if full equilibrium is reached in the presence of hydrogen phase separation can often be expected to occur in stark contrast to the phase diagram in para-equilibrium. Our results explain the experimental observation that absorption/desorption isotherms in Pd–Au are often stable over time but also reveal pitfalls for when this may not be the case.
Clean Hydrogen Production by Ultrasound (Sonochemistry): The Effect of Noble Gases
Feb 2022
Publication
Power ultrasonic (> 100 kHz) splits water into free radicals and hydrogen. As a result water sonochemistry is considered as an alternative clean and fossil-fuel-free hydrogen production technique. In this research work the impact of rare gases (Xe Ar and He) on the sonochemical production of hydrogen as well as the population of active bubbles has been investigated computationally for various sonicated frequencies (213-515 kHz) and intensities (1-2 W/cm²). It has been found that both the H2 yielding and the bubble population size for H2 yielding are in the order Xe>Ar>He whatever the imposed sonolytic parameters (i.e. frequency and power). These findings were principally ascribed to the thermal conductivity of the saturating gases which is in the reverse order (He>Ar>Xe). Besides the difference between Ar and Xe is condensed in comparison with the He gas. For wave frequencies larger than 213 kHz however all saturating gases (Xe Ar and He) behave identically with the influence of thermal conductivity of these gases on the optimal radius muted. At 213 kHz however this impact is plainly visible (Ropt (Ar and Xe)>Ropt (He)). As per the results obtained helium's inefficiency as a saturating gas for hydrogen production is verified but xenon's maximal efficacy is reached when water is saturated with it. These results support the fewer experimental data reported in this emerging branch of sonochemistry while the discussed results in the present (i.e. noble gases effect on sono-hydrogen production) are treated for the first time consequently our work is considered as a guideline for increasing the efficacy of hydrogen production in a sonochemical reactor.
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser using the abondand water resources which are covering around ⅔ of the Earth's surface. Electrolysers however require high-quality water with conductivity in the range of 0.1–1 μS/cm. In January 2018 there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation using renewable resources such as photovoltaic (PV) devices wind turbines as well as electricity from the grid was assessed considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources under the assumption of a nominal discount rate inflation rate project lifetime and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro and the main findings being as follows:<br/>The cost of producing water with quality required by the electrolyser is low compared with the cost of electricity for operation of the electrolyser and therefore has little effect on the total cost of hydrogen production (less than 1%).<br/>The optimal solution was shown to be electricity from the grid which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.<br/>Grid based electricity resulted in the lowest hydrogen production cost even when costs for CO2 emissions in Norway that will start to apply in 2025 was considered being approximately US$7.7/kg H2.<br/>From economical point of view wind energy was found to be a more economical than solar.
Electrosynthesized Ni-P Nanospheres with High Activity and Selectivity Towards Photoelectrochemical Plastics Reforming
May 2021
Publication
Photoelectrochemical reforming of plastic waste offers an environmentally-benign and sustainable route for hydrogen generation. Nonetheless little attention was paid to develop electrocatalysts that can efficiently and selectively catalyze oxidative transformation of valueless plastic wastes into valued chemicals. Herein we report on facile electrosynthesis of nickel-phosphorus nanospheres (nanoNi-P) and their versatility in catalyzing hydrogen generation water oxidation and reforming of polyethylene terephthalate (PET). Notably composite of nanoNi-P with carbon nanotubes (CNT/nanoNi-P) requires −180 mV overpotential to drive hydrogen generation at -100 mA cm−2. Besides CV-activated nanoNi-P (nanoNi-P(CV)) was shown to be capable of reforming PET into formate with high selectivity (Faradic efficiency= ∼100 %). Efficient and selective generation of hydrogen and formate from PET reforming is realized utilizing an Earth-abundant photoelectrochemical platform based on nanoNi-P(CV)-modified TiO2 nanorods photoanode and CNT/nanoNi-P cathode. This work paves a path for developing artificial leaf for simultaneous environmental mitigation and photosynthesis of renewable fuels and valued chemicals.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Controlled Biosynthesis of ZnCdS Quantum Dots with Visible-Light-Driven Photocatalytic Hydrogen Production Activity
May 2021
Publication
The development of visible-light-responsive photocatalysts with high efficiency stability and eco-friendly nature is beneficial to the large-scale application of solar hydrogen production. In this work the production of biosynthetic ternary ZnCdS photocatalysts (Eg = 2.35–2.72 eV) by sulfate-reducing bacteria (SRB) under mild conditions was carried out for the first time. The huge amount of biogenic S2− and inherent extracellular proteins (EPs) secreted by SRB are important components of rapid extracellular biosynthesis. The ternary ZnCdS QDs at different molar ratios of Zn2+and Cd2+ from 15:1 to 1:1 were monodisperse spheres with good crystallinity and average crystallite size of 6.12 nm independent of the molar ratio of Cd2+ to Zn2+. All the ZnCdS QDs had remarkable photocatalytic activity and stability for hydrogen evolution under visible light without noble metal cocatalysts. Especially ZnCdS QDs at Zn/Cd = 3:1 showed the highest H2 production activity of 3.752 mmol·h−1·g−1. This excellent performance was due to the high absorption of visible light the high specific surface area and the lower recombination rate between photoexcited electrons and holes. The adhered inherent EPs on the ZnCdS QDs slowed down the photocorrosion and improved the stability in photocatalytic hydrogen evolution. This study provides a new direction for solar hydrogen production.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
Energy Optimization of a Sulfur-Iodine Thermochemical Nuclear Hydrogen Production Cycle
Dec 2021
Publication
The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence in this paper a thermal energy optimization of a SulfureIodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating compared to the reference design with no heat exchanger network. With this reduction the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.
Cogeneration of Green Hydrogen in a Cascade Hydropower Plant
Apr 2021
Publication
Hydrogen is today an indispensable feedstock in various process industries but the method of its production is mostly not in line with accepted environmental guidelines. With emerging electro-energetic systems with a large share of renewable sources hydrogen is also becoming an important energy carrier which with the possibility of storing surplus energy ensures greater stability of power system operation and energy supply. Therefore the use of electricity from renewable sources is important for the production of green hydrogen using electrolysis. The first part of the article describes the possibilities for hydrogen cogeneration in one of the run-of-river hydropower plants in Slovenia. The implementation costs of the necessary equipment for hydrogen production in the case-study power plant its production costs and the profitability of hydrogen production compared to the sale of electricity are estimated. The criteria according to which the production of hydrogen is more profitable than the sale of electricity at current prices and guaranteed sales is also defined. In the second part of the article a scenario for the use of hydrogen for heating and mobility needs in the nearby local community is presented. For the regular supply of hydrogen in the range of up to 30 kg/h the necessary investment costs for the installation of the appropriate equipment in the hydropower plant are calculated along with an estimation of the payback period of the investment.
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook
Feb 2022
Publication
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen the ultimate clean fuel from the Sun and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting but it is very inefficient; rather we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields and in how this can alter and boost PEC activity drawing both on experiment and non-equilibrium molecular simulation.
No more items...