Production & Supply Chain
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to upscaling. Traditional MEC designs incorporated membranes but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.
Simulation of a Multi-Functional Energy System for Cogeneration of Steam, Power and Hydrogen in a Coke Making Plant
Mar 2013
Publication
In this paper a multifunctional energy system (MES) is proposed for recovering energy from the extra of coke oven gas (COG) which is usually flared or vented out as a waste stream in coke making plants. The proposed system consists of a pressure swing adsorption (PSA) unit for extracting some of the hydrogen from COG a gas turbine for producing heat and power from PSA offgas and a heat recovery steam generator (HRSG) for generating the steam required by the plant's processes. o assess the performance of the system practically simulations are carried out on the basis of the design and operational conditions of Zarand Coke Making Plant in Iran. The results indicate that by utilizing about 4.39 tons of COG per hour 6.5 MW of net electric power can be approximately produced by the gas turbine which can supply the coke making plant's total electrical power demand. Furthermore through recovering heat from gas turbine's exhaust close to 57% of the plant's steam demand can be supplied by the HRSG unit. It is also found that around 350 kilograms per hour of nearly pure hydrogen (99.9% purity) at 200 bar can be produced by the PSA unit. According to the sensitivity analysis results if the hydrogen content of the coke oven gas decreases by about 10% the gross power output of the gas turbine also declines by around 5.2% due to the reduction of LHV of the PSA offgas. Moreover economic evaluation of the system shows that the payback period of the investment which is estimated at 36.1 M$ is about 5.5 years. The net present value (NPV) and internal rate of return on investment (ROI) are calculated to be 17.6% and 43.3 M$ respectively.
Molybdenum Carbide Microcrystals: Efficient and Stable Catalyst for Photocatalytic H2 Evolution From Water in The Presence Of Dye Sensitizer
Sep 2016
Publication
Rod-like molybdenum carbide (Mo2C) microcrystals were obtained from the pyrolysis of Mo-containing organic-inorganic hybrid composite. We investigated the photocatalytic H2 evolution activity of Mo2C by constructing a Mo2C-dye sensitizer photocatalyst system. A high quantum efficiency of 29.7% was obtained at 480 nm. Moreover Mo2C catalyst can be easily recycled by simple filtration.
Estimation of Hydrogen Production using Wind Energy in Algeria
Aug 2015
Publication
In response to problems involved in the current crisis of petrol in Algeria with the decrease in the price of the oil barrel the rate of growth in domestic electricity demand and with an associated acceleration of global warming as a result of significantly increased greenhouse gas (GHG) emissions renewable energy seems today as a clean and strategic substitution for the next decades. However the greatest obstacles which face electric energy comes from renewable energy systems are often referred to the intermittency of these sources as well as storage and transport problems the need for their conversion into a versatile energy carrier in its use storable transportable and environmentally acceptable are required. Among all the candidates answering these criteria hydrogen presents the best answer. In the present work particular attention is paid to the production of hydrogen from wind energy. The new wind map of Algeria shows that the highest potential wind power was found in Adrar Hassi-R'Mel and Tindouf regions. The data obtained from these locations have been analyzed using Weibull probability distribution function. The wind energy produced in these locations is exploited for hydrogen production through water electrolysis. The objective of this paper is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from wind energy using four wind energy conversion systems of 600 1250 1500 and 2000 kW rated capacity. The feasibility study shows that using wind energy in the selected sites is a promising solution. It is shown that the turbine " De Wind D7" is sufficient to supply the electricity and hydrogen with a least cost and a height capacity factor. The minimum cost of hydrogen production of 1.214 $/kgH2 is obtained in Adrar.
Design of an Architectural Element Generating Hydrogen Energy by Photosynthesis—Model Case of the Roof and Window
Jun 2022
Publication
As is well known the realization of a zero-waste society is strongly desired in a sustainable society. In particular architectural elements that provide an energy-neutral living environment are attractive. This article presents the novel environmentally friendly architectural elements that generate hydrogen energy by the photosystem II (PSII) solution extracted from waste vegetables. In the present work as an architectural element the window (PSII window panel) and roof (PSII roof panel) were fabricated by injecting a PSII solution into a transparent double-layer panel and the aging properties of the power generation and the appearance of these PSII panels are investigated. It was found that the PSII roof can generate energy for 18 days under the sun shining and can actually drive the electronic device. In addition the PSII window for which light intensity is weaker than that for the PSII roof can maintain power generation for 40 days. These results indicate that the PSII roof and PSII window become the architectural elements generating energy although the lifespan depends on the total light intensity. Furthermore as an additional advantage the roof and window panels composed of the semitransparent PSII panel yield an interior space with the natural color of the leaf which gradually changes over time from green to yellow. Further it was also found that the thermal fluctuation of the PSII window is smaller than that of the typical glass window. These results indicate that the roof and window panels composed of the PSII solution extracted from waste vegetables can be used as the actual architectural elements to produce not only the electrical energy but also the beautiful transparent natural green/yellow spaces.
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Dedicated Large-scale Floating Offshore Wind to Hydrogen: Assessing Design Variables in Proposed Typologies
Mar 2022
Publication
To achieve the Net-Zero Emissions goal by 2050 a major upscale in green hydrogen needs to be achieved; this will also facilitate use of renewable electricity as a source of decarbonised fuel in hard-to-abate sectors such as industry and transport. Nearly 80% of the world’s offshore wind resource is in waters deeper than 60 m where bottom-fixed wind turbines are not feasible. This creates a significant opportunity to couple the high capacity factor floating offshore wind and green hydrogen. In this paper we consider dedicated large-scale floating offshore wind farms for hydrogen production with three coupling typologies; (i) centralised onshore electrolysis (ii) decentralised offshore electrolysis and (iii) centralised offshore electrolysis. The typology design is based on variables including for: electrolyser technology; floating wind platform; and energy transmission vector (electrical power or offshore hydrogen pipelines). Offshore hydrogen pipelines are assessed as economical for large and distant farms. The decentralised offshore typology employing a semi-submersible platform could accommodate a proton exchange membrane electrolyser on deck; this would negate the need for an additional separate structure or hydrogen export compression and enhance dynamic operational ability. It is flexible; if one electrolyser (or turbine) fails hydrogen production can easily continue on the other turbines. It also facilities flexibility in further expansion as it is very much a modular system. Alternatively less complexity is associated with the centralised offshore typology which may employ the electrolysis facility on a separate offshore platform and be associated with a farm of spar-buoy platforms in significant water depth locations.
A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
Jan 2022
Publication
Water splitting has been regarded as a sustainable and environmentally-friendly technique to realize green hydrogen generation while more energy is consumed due to the high overpotentials required for the anode oxygen evolution reaction. Urea electrooxidation an ideal substitute is thus received increasing attention in assisting water-splitting reactions. Note that highly efficient catalysts are still required to drive urea oxidation and the facile generation of high valence state species is significant in the reaction based on the electrochemical-chemical mechanisms. The high cost and rareness make the noble metal catalysts impossible for further consideration in large-scale application. Ni-based catalysts are very promising due to their cheap price facile structure tuning good compatibility and easy active phase formation. In the light of the significant advances made recently herein we reviewed the recent advances of Ni-based powder catalysts for urea oxidation in assisting water-splitting reaction. The fundamental of urea oxidation is firstly presented to clarify the mechanism of urea-assisted water splitting and then the prevailing evaluation indicators are briefly expressed based on the electrochemical measurements. The catalyst design principle including synergistic effect electronic effect defect construction and surface reconstruction as well as the main fabrication approaches are presented and the advances of various Ni-based powder catalysts for urea assisted water splitting are summarized and discussed. The problems and challenges are also concluded for the Ni-based powder catalysts fabrication the performance evaluation and their application. Considering the key influence factors for catalytic process and their application attention should be given to structure-property relationship deciphering novel Ni-based powder catalysts development and their construction in the real device; specifically the effort should be directed to the Ni-based powder catalyst with multi-functions to simultaneously promote the fundamental steps and high anti-corrosion ability by revealing the local structure reconstruction as well as the integration in the practical application. We believe the current summarization will be instructive and helpful for the Ni-based powder catalysts development and understanding their catalytic action for urea-assisted hydrogen generation via water splitting technique.
Review of Thermochemical Technologies for Water and Energy Integration Systems: Energy Storage and Recovery
Jun 2022
Publication
Thermochemical technologies (TCT) enable the promotion of the sustainability and the operation of energy systems as well as in industrial sites. The thermochemical operations can be applied for energy storage and energy recovery (alternative fuel production from water/wastewater in particular green hydrogen). TCTs are proven to have a higher energy density and long-term storage compared to standard thermal storage technologies (sensible and latent). Nonetheless these require further research on their development for the increasing of the technology readiness level (TRL). Since TCTs operate with the same input/outputs streams as other thermal storages (for instance wastewater and waste heat streams) these may be conceptually analyzed in terms of the integration in Water and Energy Integration System (WEIS). This work is set to review the techno-economic and environmental aspects related to thermochemical energy storage (sorption and reaction-based) and wastewater-to-energy (particular focus on thermochemical water splitting technology) aiming also to assess their potential into WEIS. The exploited technologies are in general proved to be suitable to be installed within the conceptualization of WEIS. In the case of TCES technologies these are proven to be significantly more potential analogues to standard TES technologies on the scope of the conceptualization of WEIS. In the case of energy recovery technologies although a conceptualization of a pathway to produce usable heat with an input of wastewater further study has to be performed to fully understand the use of additional fuel in combustion-based processes.
Exergy Estimate of a Novel Hybrid Solar-gas Power and Organic Rankine Cycle-based Hydrogen-production System
Mar 2022
Publication
This study proposes a novel hybrid solar-gas power and hydrogen-production system which is comprised by the solar tower thermal system gas-steam turbine combined cycle and organic Rankine cycle-based hydrogen-production system. Based on the Ebsilon code the operation processes of the hybrid system are simulated. The results show that the output power and electric efficiency of the hybrid system are 103.9 MW and 41.3% and the daily hydrogen output is 62.2 kg. The operation simulation results of the hybrid system reveal that the gas-steam combined cycle and solar island can both achieve stable operations and the power generation section and hydrogen-production device can both work effectively which means the hybrid system is technically feasible. The exergy estimate results of the hybrid system show that the combustion chamber and solar receiver have the two largest exergy destructions which are 56.5 MW and 45.3 MW. That means the performances of the two components can be further improved. For the hydrogen-production system the exergy destructions of the proton exchange membrane electrolyzer turbine condenser and evaporator of the organic Rankine cycle are 0.156 MW 0.111 MW 2.338 MW and 1.891 MW and the corresponding exergy efficiencies are 51.2% 92.6% 80.7% and 79.5% respectively.
Green and Blue Hydrogen Production: An Overview in Colombia
Nov 2022
Publication
Colombia a privileged country in terms of diversity availability of natural resources and geographical location has set a roadmap for hydrogen as part of the energy transition plan proposed in 2021. To reduce its emissions in the mid-term and foster its economy hydrogen production should be green and blue with specific targets set for 2030 for the hydrogen costs and produced quantities. This work compares the state-of-the-art production of blue and green hydrogen and how Colombia is doing in each pathway. A deeper analysis considers the advantages of Colombia’s natural resources the possible paths the government could follow and the feedstock’s geographical location for hydrogen production and transportation. Then one discusses what may be the next steps in terms of policies and developments to succeed in implementing the plan. Overall it is concluded that green hydrogen could be the faster more sustainable and more efficient method to implement in Colombia. However blue hydrogen could play an essential role if oil and gas companies assess the advantages of carbon dioxide utilization and promote its deployment.
Techno-economic Viability of Islanded Green Ammonia as a Carbon-free Energy Vector and as a Substitute for Conventional Production
Jul 2020
Publication
Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each we show the range of achievable LCOA the cost of process flexibility the components of LCOA and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t1 is achievable at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030 $310 t1 is predicted to be achievable with multiple locations below $350 t1 . At $25.4 GJ11 ) that do not have the benefit of being carbon-free.
Large-scale Hydrogen Production via Water Electrolysis: A Techno-economic and Environmental Assessment
Jul 2022
Publication
Low-carbon (green) hydrogen can be generated via water electrolysis using photovoltaic wind hydropower or decarbonized grid electricity. This work quantifies current and future costs as well as environmental burdens of large-scale hydrogen production systems on geographical islands which exhibit high renewable energy potentials and could act as hydrogen export hubs. Different hydrogen production configurations are examined considering a daily hydrogen production rate of 10 tonnes on hydrogen production costs life cycle greenhouse gas emissions material utilization and land transformation. The results demonstrate that electrolytic hydrogen production costs of 3.7 Euro per kg H2 are within reach today and that a reduction to 2 Euro per kg H2 in year 2040 is likely hence approaching cost parity with hydrogen from natural gas reforming even when applying ‘‘historical’’ natural gas prices. The recent surge of natural gas prices shows that cost parity between green and grey hydrogen can already be achieved today. Producing hydrogen via water electrolysis with low costs and low GHG emissions is only possible at very specific locations nowadays. Hybrid configurations using different electricity supply options demonstrate the best economic performance in combination with low environmental burdens. Autonomous hydrogen production systems are especially effective to produce low-carbon hydrogen although the production of larger sized system components can exhibit significant environmental burdens and investments. Some materials (especially iridium) and the availability of land can be limiting factors when scaling up green hydrogen production with polymer electrolyte membrane (PEM) electrolyzers. This implies that decision-makers should consider aspects beyond costs and GHG emissions when designing large-scale hydrogen production systems to avoid risks coming along with the supply of for example scarce materials
Green Hydrogen Production Technologies from Ammonia Cracking
Nov 2022
Publication
The rising technology of green hydrogen supply systems is expected to be on the horizon. Hydrogen is a clean and renewable energy source with the highest energy content by weight among the fuels and contains about six times more energy than ammonia. Meanwhile ammonia is the most popular substance as a green hydrogen carrier because it does not carry carbon and the total hydrogen content of ammonia is higher than other fuels and is thus suitable to convert to hydrogen. There are several pathways for hydrogen production. The considered aspects herein include hydrogen production technologies pathways based on the raw material and energy sources and different scales. Hydrogen can be produced from ammonia through several technologies such as electro-chemical photocatalytic and thermochemical processes that can be used at production plants and fueling stations taking into consideration the conversion efficiency reactors catalysts and their related economics. The commercial process is conducted by using expensive Ru catalysts in the ammonia converting process but is considered to be replaced by other materials such as Ni Co La and other perovskite catalysts which have high commercial potential with equivalent activity for extracting hydrogen from ammonia. For successful engraftment of ammonia to hydrogen technology into industry integration with green technologies and economic methods as well as safety aspects should be carried out.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
Review on COx-free Hydrogen from Methane Cracking: Catalysts, Solar Energy Integration and Applications
Oct 2021
Publication
Hydrogen fuel production from methane cracking is a sustainable process compared to the ones currently in practice due to minimal greenhouse gas emissions. Carbon black that is co-produced is a valuable product and can be marketed to other industries. As this is a high-temperature process using concentrated solar energy can further improve its sustainability. In this study a detailed review is conducted to study the advancements in methane cracking for hydrogen production using different catalysts. Various solar reactors developed for methane cracking are discussed. The application of hydrogen to produce other valuable chemicals are outlined. Hydrogen carriers such as methanol dimethyl ether ammonia and urea can efficiently store hydrogen energy and enable easier transportation. Further research in the field of methane cracking is required for reactor scale-up improved economics and to reduce the problems arising from carbon deposition leading to reactor clogging and catalyst deactivation.
Favorable Start-Up Behavior of Polymer Electrolyte Membrane Water Electrolyzers
Nov 2022
Publication
Dynamically-operated water electrolyzers enable the production of green hydrogen for cross-sector applications while simultaneously stabilizing power grids. In this study the start-up phase of polymer electrolyte membrane (PEM) water electrolyzers is investigated in the context of intermittent renewable energy sources. During the start-up of the electrolysis system the temperature increases which directly influences hydrogen production efficiency. Experiments on a 100 kWel electrolyzer combined with simulations of electrolyzers with up to 1 MWel were used to analyze the start-up phase and assess its implications for operators and system designers. It is shown that part-load start-up at intermediate cell voltages of 1.80 V yields the highest efficiencies of 74.0 %LHV compared to heat-up using resistive electrical heating elements which reaches maximum efficiencies of 60.9 %LHV. The results further indicate that large-scale electrolyzers with electrical heaters may serve as flexible sinks in electrical grids for durations of up to 15 min.
Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman
Nov 2022
Publication
Recently the management of water and wastewater is gaining attention worldwide as a way of conserving the natural resources on the planet. The traditional wastewater treatment in Oman is such that the treated effluent produced is only reused for unfeasible purposes such as landscape irrigation cooling or disposed of in the sea. Introducing more progressive reuse applications can result in achieving a circular economy by considering treated effluent as a source of producing new products. Accordingly wastewater treatment plants can provide feedstock for green hydrogen production processes. The involvement of the wastewater industry in the green pathway of production scores major points in achieving decarbonization. In this paper the technical and economic feasibility of green hydrogen production in Oman was carried out using a new technique that would help explore the benefits of the treated effluent from wastewater treatment in Oman. The feasibility study was conducted using the Al Ansab sewage treatment plant in the governate of Muscat in Wilayat (region) Bousher. The results have shown that the revenue from Al Ansab STP in a conventional case is 7.02 million OMR/year while sustainable alternatives to produce hydrogen from the Proton Exchange Membrane (PEM) electrolyzer system for two cases with capacities of 1500 kg H2/day and 50000 kg H2/day would produce revenue of 8.30 million OMR/year and 49.73 million OMR/year respectively.
Production of Hydrogen from Offshore Wind in China and Cost-competitive Supply to Japan
Nov 2021
Publication
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid or bound to a chemical carrier such as toluene or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen including expenses for production storage conversion transport and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Potential for Natural Hydrogen in Quebec (Canada): A First Review
Mar 2024
Publication
The energy transition calls for natural hydrogen exploration with most occurrences discovered either inadvertently or more recently at the location of potentially diffusive circles observed from a change of vegetation cover at the surface. However some notable hydrogen occurrences are not directly associated with the presence of diffusive circles like the Bourakebougou field in Mali. Thus the objective of this work was to highlight geological areas that have some potential to find natural hydrogen in Quebec a Canadian province where no diffusive circles have yet been documented but which is rich in potential source rocks and where no exploration for natural hydrogen has been undertaken so far. A review of the different geological regions of Quebec was undertaken to highlight the relevant characteristics and geographical distribution of geological assemblages that may produce or have produced natural hydrogen in particular iron-rich rocks but also uranium-rich rocks supramature shales and zones where significant structural discontinuities are documented or suspected which may act as conduits for the migration of fluids of mantle origin. In addition to regional and local geological data an inventory of available geochemical data is also carried out to identify potential tracers or proxies to facilitate subsequent exploration efforts. A rating was then proposed based on the quality of the potential source rocks which also considers the presence of reservoir rocks and the proximity to end-users. This analysis allowed rating areas of interest for which fieldwork can be considered thus minimizing the exploratory risks and investments required to develop this resource. The size of the study area (over 1.5 million km2 ) the diversity of its geological environments (from metamorphic cratons to sedimentary basins) and their wide age range (from Archean to Paleozoic) make Quebec a promising territory for natural hydrogen exploration and to test the systematic rating method proposed here.
Strategies for Life Cycle Impact Reduction of Green Hydrogen Production - Influence of Electrolyser Value Chain Design
Mar 2024
Publication
Green Hydrogen (H2 via renewable-driven electrolysis) is emerging as a vector to meet net-zero emission targets provided it is produced with a low life cycle impact. While certification schemes for green H2 have been introduced they mainly focus on the embodied emissions from energy supply during electrolyser operation. This narrow focus on just operation is an oversight considering that a complete green H2 value chain also includes the electrolyser’s manufacturing transport/installation and end-of-life. Each step of this chain involves materials and energy flows that impart impacts that undermine the clean and sustainable status of H2. Therefore holistic and harmonised assessments of the green H2 production chain are required to ensure both economic and environmental deployment of H2. Herein we conduct an overarching environmental assessment encompassing the production chain described above using Australia as a case study. Our results indicate that while the energy source has the most impact material and manufacturing inputs associated with electrolyser production are increasingly significant as the scale of H2 output expands. Moreover wind power electrolysis has a greater chance of achieving green H2 certification compared to solar powered while increasing the amount of localised manufactured content and investment in end-of-life recycling of electrolyser components can reduce the overall life cycle impact of green H2 production by 20%.
Golden Hydrogen
Nov 2022
Publication
Hydrogen is a colorless compound to which symbolic colors are attributed to classify it according to the resources used in production production processes such as electrolysis and energy vectors such as solar radiation. Green hydrogen is produced mainly by electrolysis of water using renewable electricity from an electricity grid powered by wind geothermal solar or hydroelectric power plants. For grid-powered electrolyzers the tendency is to go larger to reach the gigawatt-scale. An evolution in the opposite direction is the integration of the photophysics of sunlight harvesting and the electrochemistry of water molecule splitting in solar hydrogen generator units with each unit working at kilowatt-scale or less. Solar hydrogen generators are intrinsically modular needing multiplication of units to reach gigawatt-scale. To differentiate these two fundamentally different technologies the term ‘golden hydrogen’ is proposed referring to hydrogen produced by modular solar hydrogen generators. Decentralized modular production of golden hydrogen is complementary to centralized energy-intensive green hydrogen production. The differentiation between green hydrogen and golden hydrogen will facilitate the introduction of the additionality principle in clean hydrogen policy.
Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water
Apr 2022
Publication
This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen carbon monoxide carbon dioxide methane acetylene and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H2 )/kWh and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells the power load of which can fluctuate.
Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
Sep 2021
Publication
Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.
Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Nov 2022
Publication
The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro solar and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end a site was selected latitude 33.64◦ N longitude 72.98◦ N and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed wind direction and wind gust was collected at 10 min intervals. Subsequently long short-term memory (LSTM) support vector regression (SVR) and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify process and predict.
Advances in Hydrogen Production from Natural Gas Reforming
Jun 2021
Publication
Steam natural gas reforming is the preferred technique presently used to produce hydrogen. Proposed in 1932 the technique is very well established but still subjected to perfections. Herein first the improvements being sought in catalysts and processes are reviewed and then the advantage of replacing the energy supply from burning fuels with concentrated solar energy is discussed. It is especially this advance that may drastically reduce the economic and environmental cost of hydrogen production. Steam reforming can be easily integrated into concentrated solar with thermal storage for continuous hydrogen production.
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Hydrogenerally - Episode 9: Nuclear Hydrogen
Jan 2023
Publication
In this episode of the podcast Debra Jones Chemistry Knowledge Transfer Manager and Ray Chegwin Nuclear Knowledge Transfer Manager from Innovate UK KTN talk about nuclear uses for hydrogen with special guest Allan Simpson Technical Lead at the National Nuclear Laboratory.
The podcast can be found on their website.
The podcast can be found on their website.
Feasibility of Hydrogen Production from Steam Reforming of Biodiesel (FAME) Feedstock on Ni-supported Catalysts
Jan 2015
Publication
The catalytic steam reforming of biodiesel was examined over Ni-alumina and Ni–ceria–zirconia catalysts at atmospheric pressure. Effects of temperatures of biodiesel preheating/vaporising (190–365 ◦C) and reforming (600–800 ◦C) molar steam to carbon ratio (S/C = 2–3) and residence time in the reformer represented by the weight hourly space velocity ‘WHSV’ of around 3 were examined for 2 h. Ni supported on calcium aluminate and on ceria–zirconia supports achieved steady state hydrogen product stream within 90% of the equilibrium yields although 4% and 1% of the carbon feed had deposited on the catalysts respectively during the combined conditions of start-up and steady state. Addition of dopants to ceria–zirconia supported catalyst decreased the performance of the catalyst. Increase in S/C ratio had the expected positive effects of higher H2 yield and lower carbon deposition.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower
Apr 2020
Publication
The development of hydropower industry is progressing rapidly in China and the installed capacity and power generation are increasing year by year. However due to factors such as transmission channels and power grid peaking capacity hydropower consumption in some areas is facing greater pressure. As an excellent medium for energy interconnection hydrogen energy can play an important role in promoting hydropower consumption. This paper introduces the current status and trends of hydrogen energy development in major developed countries and China and analyzes the current status of China’s hydropower abandoned water. Based on the production of hydrogen using surplus hydropower in the Dadu River Basin in Sichuan an integrated energy network research plan including hydropower electrolytic hydrogen production storage and transportation hydrogen refueling and hydrogen-powered vehicles is proposed. At the same time the development concept of hydrogen energy industry including hydrogen energy source economy hydrogen energy industry ecosphere and hydrogen energy sky road in western Sichuan is also proposed.
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Wind Resource Assessment and Techno-economic Analysis of Wind Energy and Green Hydrogen Production in the Republic of Djibouti
Jul 2022
Publication
The ever increasing energy demand of the Republic of Djibouti leads to the diversification of energy sources. While a few studies have explored the prospects of green hydrogen production from wind energy in developing countries and particularly in Africa the economic risk analysis of wind power production for electricity generation and green hydrogen production has not been assessed for African countries. This study evaluates for the first time the potential of wind energy for electricity and green hydrogen production in the Republic of Djibouti. In this study wind speed characteristics were analyzed using wind data measured at five meteorological stations from 2015 to 2019. The technoeconomic analysis of five wind farms with a total capacity of 450 MW is performed. Levelized cost of energy production (LCOE) levelized cost of green hydrogen production (LCOH) sensitivity analysis Monte Carlo simulation and economic performance indicators are presented. Results reveal that the annual wind speed varies between 5.52 m/s and 9.01 m/s for the five sites. ERA5 wind reanalysis indicates that the seasonal variability of wind is stable between different years. The proposed wind farms estimate 1739 GWh per year of electrical energy with LCOE ranging from 6.94 to 13.30 US cents/kWh which is less than the locale electricity tariff. The production cost of green hydrogen was competitive with LCOH ranging from 1.79 to 3.38 US $/kg H2. The sensitivity analysis shows that the most relevant parameters in the economic analysis are the initial investment cost the interest rate and the factor capacity.
A Brief Review of Hydrogen Production Methods and Their Challenges
Jan 2023
Publication
Hydrogen is emerging as a new energy vector outside of its traditional role and gaining more recognition internationally as a viable fuel route. This review paper offers a crisp analysis of the most recent developments in hydrogen production techniques using conventional and renewable energy sources in addition to key challenges in the production of Hydrogen. Among the most potential renewable energy sources for hydrogen production are solar and wind. The production of H2 from renewable sources derived from agricultural or other waste streams increases the flexibility and improves the economics of distributed and semi-centralized reforming with little or no net greenhouse gas emissions. Water electrolysis equipment driven by off-grid solar or wind energy can also be employed in remote areas that are away from the grid. Each H2 manufacturing technique has technological challenges. These challenges include feedstock type conversion efficiency and the need for the safe integration of H2 production systems with H2 purification and storage technologies.
Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review
Oct 2022
Publication
This study is a systematic analysis of selected research articles about power-to-X (P2X)- related processes. The relevance of this resides in the fact that most of the world’s energy is produced using fossil fuels which has led to a huge amount of greenhouse gas emissions that are the source of global warming. One of the most supported actions against such a phenomenon is to employ renewable energy resources some of which are intermittent such as solar and wind. This brings the need for large-scale longer-period energy storage solutions. In this sense the P2X process chain could play this role: renewable energy can be converted into storable hydrogen chemicals and fuels via electrolysis and subsequent synthesis with CO2. The main contribution of this study is to provide a systematic articulation of advanced data-driven methods and latest technologies such as the Internet of Things (IoT) big data analytics and machine learning for the efficient operation of P2X-related processes. We summarize our findings into different working architectures and illustrate them with a numerical result that employs a machine learning model using historic data to define operational parameters for a given P2X process.
A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition
Jan 2023
Publication
Ammonia (NH3 ) is regarded as a promising medium of hydrogen storage due to its large hydrogen storage density decent performance on safety and moderate storage conditions. On the user side NH3 is generally required to decompose into hydrogen for utilization in fuel cells and therefore it is vital for the NH3 -based hydrogen storage technology development to study NH3 decomposition processes and improve the decomposition efficiency. Numerical simulation has become a powerful tool for analyzing the NH3 decomposition processes since it can provide a revealing insight into the heat and mass transfer phenomena and substantial guidance on further improving the decomposition efficiency. This paper reviews the numerical simulations of NH3 decomposition in various application scenarios including NH3 decomposition in microreactors coupled combustion chemical reactors solid oxide fuel cells and membrane reactors. The models of NH3 decomposition reactions in various scenarios and the heat and mass transport in the reactor are elaborated. The effects of reactor structure and operating conditions on the performance of NH3 decomposition reactor are analyzed. It can be found that NH3 decomposition in microchannel reactors is not limited by heat and mass transfer and NH3 conversion can be improved by using membrane reactors under the same conditions. Finally research prospects and opportunities are proposed in terms of model development and reactor performance improvement for NH3 decomposition.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
Techno-economic Assessment of Offshore Wind-to-hydrogen Scenarios: A UK Case Study
Jan 2023
Publication
The installed capacity electricity generation from wind and the curtailment of wind power in the UK between 2011 and 2021 showed that penetration levels of wind energy and the amount of energy that is curtailed in future would continue to rise whereas the curtailed energy could be utilised to produce green hydrogen. In this study data were collected technologies were chosen systems were designed and simulation models were developed to determine technical requirements and levelised costs of hydrogen produced and transported through different pathways. The analysis of capital and operating costs of the main components used for onshore and offshore green hydrogen production using offshore wind including alternative strategies for hydrogen storage and transport and hydrogen carriers showed that a significant reduction in cost could be achieved by 2030 enabling the production of green hydrogen from offshore wind at a competitive cost compared to grey and blue hydrogen. Among all scenarios investigated in this study compressed hydrogen produced offshore is the most cost-effective scenario for projects starting in 2025 although the economic feasibility of this scenario is strongly affected by the storage period and the distance to the shore of the offshore wind farm. Alternative scenarios for hydrogen storage and transport such as liquefied hydrogen and methylcyclohexane could become more cost-effective for projects starting in 2050 when the levelised cost of hydrogen could reach values of about £2 per kilogram of hydrogen or lower.
Novel Carbon-neutral Hydrogen Production Process of Steam Methane Reforming Integrated with Desalination Wastewater-based CO2 Utilization
Nov 2022
Publication
Steam methane reforming (SMR) process is facing serious greenhouse effect problems because of the significant CO2 emissions. To reduce pollution caused by gaseous emissions desalination wastewater can be used because it contains highly concentrated useful mineral ions such as Ca2+ Mg2+ and Na+ which react with carbonate ions. This study proposes a novel SMR process for carbon-neutral hydrogen production integrated with desalination wastewater-based CO2 utilization. A process model for the design of a novel SMR process is proposed; it comprises the following steps: (1) SMR process for hydrogen production; and (2) desalination wastewater recovery for CO2 utilization. In the process model the CO2 from the SMR process was captured using the Na+ ion and the captured ionic CO2 was carbonated using the Ca2+ and Mg2+ ions in desalination wastewater. The levelized cost of hydrogen (LCOH) was assessed to demonstrate the economic feasibility of the proposed process. Therefore 94.5 % of the CO2 from the SMR process was captured and the conversion of MgCO3 and CaCO3 was determined to be 60 % and 99 % respectively. In addition the CO2 emission via the proposed process was determined to be 0.016 kgCO2/kgH2 and the LCOH was calculated to be 2.6 USD/kgH2.
Exergy and Exergoeconomic Analysis for the Proton Exchange Membrane Water Electrolysis under Various Operating Conditions and Design Parameters
Nov 2022
Publication
Integrating the exergy and economic analyses of water electrolyzers is the pivotal way to comprehend the interplay of system costs and improve system performance. For this a 3D numerical model based on COMSOL Multiphysics Software (version 5.6 COMSOL Stockholm Sweden) is integrated with the exergy and exergoeconomic analysis to evaluate the exergoeconomic performance of the proton exchange membrane water electrolysis (PEMWE) under different operating conditions (operating temperature cathode pressure current density) and design parameter (membrane thickness). Further the gas crossover phenomenon is investigated to estimate the impact of gas leakage on analysis reliability under various conditions and criteria. The results reveal that increasing the operating temperature or decreasing the membrane thickness improves both the efficiency and cost of hydrogen exergy while increasing the gas leakage through the membrane. Likewise raising the current density and the cathode pressure lowers the hydrogen exergy cost and improves the economic performance. The increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency due to the gas crossover are more noticeable at higher pressures. As the cathode pressure rises from 1 to 30 bar at a current density of 10000 A/m2 the increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency are increased by 37.6 kJ/mol 4.49 USD/GJ and 7.1% respectively. The cheapest green electricity source which is achieved using onshore wind energy and hydropower reduces hydrogen production costs and enhances economic efficiency. The growth in the hydrogen exergy cost is by about 4.23 USD/GJ for a 0.01 USD/kWh increase in electricity price at the current density of 20000 A/m2. All findings would be expected to be quite useful for researchers engaged in the design development and optimization of PEMWE.
Sustainable Ammonia Production Processes
Mar 2021
Publication
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier many studies have recently attempted to find the most environmentally benign energy efficient and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover for production of 1 tonne of hydrogen 9 tonnes of water is required. Based on this data for the production of the same amount of ammonia through water electrolysis 233.6 million tonnes/yr of water is required. In this paper a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Dynamic Investigation and Optimization of a Solar‐Based Unit for Power and Green Hydrogen Production: A Case Study of the Greek Island, Kythnos
Nov 2022
Publication
The aim of the present work is the analysis of a solar‐driven unit that is located on the non‐interconnected island of Kythnos Greece that can produce electricity and green hydrogen. More specifically solar energy is exploited by parabolic trough collectors and the produced heat is stored in a thermal energy storage tank. Additionally an organic Rankine unit is incorporated to generate electricity which contributes to covering the island’s demand in a clean and renewable way. When the power cannot be absorbed by the local grid it can be provided to a water electrolyzer; therefore the excess electricity is stored in the form of hydrogen. The produced hydrogen amount is compressed afterward stored in tanks and then finally can be utilized as a fuel to meet other important needs such as powering vehicles or ferries. The installation is simulated parametrically and optimized on dynamic conditions in terms of energy exergy and finance. According to the results considering a base electrical load of 75 kW the annual energy and exergy efficiencies are found at 14.52% and 15.48% respectively while the payback period of the system is deter‐ mined at 6.73 years and the net present value is equal to EUR 1073384.
Feasibility Study of Vacuum Pressure Swing Adsorption for CO2 Capture From an SMR Hydrogen Plant: Comparison Between Synthesis Gas Capture and Tail Gas Capture
Dec 2021
Publication
In this paper a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms zeolite 13X and activated carbon were selected for tail gas and syngas capture options respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.
Hydrogen Production from the Air
Sep 2022
Publication
Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here we demonstrate a method of direct hydrogen production from the air namely in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm−2 . A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4% overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote (semi-) arid and scattered areas.
A Low-temperature Ammonia Electrolyser for Wastewater Treatment and Hydrogen Production
May 2023
Publication
Ammonia is a pollutant present in wastewater and is also a valuable carbon-free hydrogen carrier. Stripping recovery and anodic oxidation of ammonia to produce hydrogen via electrolysis is gaining momentum as a technology yet the development of an inexpensive stable catalytic material is imperative to reduce cost. Here we report on a new nickel copper (NiCu) catalyst electrodeposited onto a high surface area nickel felt (NF) as an anode for ammonia electrolysis. Cyclic voltammetry demonstrated that the catalyst/substrate combination reached the highest current density (200 mA cm2 at 20 C) achieved for a non-noble metal catalyst. A NiCu/NF electrode was tested in an anion exchange membrane electrolyser for 50 h; it showed good stability and high Faradaic efficiency for ammonia oxidation (88%) and hydrogen production (99%). We demonstrate that this novel electrode catalyst/substrate material combination can oxidise ammonia in a scaled system and hydrogen can be produced as a valuable by-product at industrial-level current densities and cell voltages lower than that for water electrolysis.
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
No more items...