Applications & Pathways
Preliminary Analysis of Compression System Integrated Heat Management Concepts Using LH2-Based Parametric Gas Turbine Model
Apr 2021
Publication
The investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6 but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.
Experimental Study on the Cycle Variation Characteristics of Direct Injection Hydrogen Engine
Jun 2022
Publication
Hydrogen energy is an important technical route to achieve carbon peak and carbon neutrality. Direct injection hydrogen engine is one of the ways of hydrogen energy application. It has the advantages of high thermal efficiency and limit/reduce abnormal combustion phenomena. In order to explore the cycle characteristics of direct injection hydrogen engine based on a 2.0L direct injection hydrogen engine an experimental study on the cycle characteristics of direct injection hydrogen engine was carried out. The experimental results show that cycle variation increases from 0.67% to 1.02% with the increasing of engine speed. The cycle variation decreases from 1.52% to 0.64% with the increasing of engine load. As the equivalence ratio increases the cycle variation first decreases significantly from 2.52% to 0.35% and then stabilizes. The ignition advance angle has a better angle to minimize the cycle variation. An experimental study on the influence of the start of injection on the cycle variation was carried out. As the engine speed/engine load is 2000rpm/4bar the cycle variation increases from 0.72% to 2.42% with the start of injection changing from -280°CA to -180°CA; then rapidly decreases to 0.99% and then increases to 2.26% with the start of injection changing from -180°CA to -100°CA. The experimental results show that SOI could cause significant influence on cycle variation because of intake valve closing and shortening mixing time and both the process of intake valve closing and lagging the SOI could cause the cycle variation to increase. The SOI remarkably affects the cycle variation at low engine load/equivalence ratio and high engine speed. This study lays the foundation for the follow-up research of hydrogen engine performance matching of the cycle variation.
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives
Jul 2022
Publication
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zeroemission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51437 units with South Korea leading the market with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021 with the highest number of new vehicles and stations in a single year paralleling the year’s overall economic recovery. Yet a more ambitious ramp-up in the coming years is required to achieve the set targets.
Hydrogen Fuel for Future Mobility: Challenges and Future Aspects
Jul 2022
Publication
Nowadays the combustion of fossil fuels for transportation has a major negative impact on the environment. All nations are concerned with environmental safety and the regulation of pollution motivating researchers across the world to find an alternate transportation fuel. The transition of the transportation sector towards sustainability for environmental safety can be achieved by the manifestation and commercialization of clean hydrogen fuel. Hydrogen fuel for sustainable mobility has its own effectiveness in terms of its generation and refueling processes. As the fuel requirement of vehicles cannot be anticipated because it depends on its utilization choosing hydrogen refueling and onboard generation can be a point of major concern. This review article describes the present status of hydrogen fuel utilization with a particular focus on the transportation industry. The advantages of onboard hydrogen generation and refueling hydrogen for internal combustion are discussed. In terms of performance affordability and lifetime onboard hydrogen-generating subsystems must compete with what automobile manufacturers and consumers have seen in modern vehicles to date. In internal combustion engines hydrogen has various benefits in terms of combustive properties but it needs a careful engine design to avoid anomalous combustion which is a major difficulty with hydrogen engines. Automobile makers and buyers will not invest in fuel cell technology until the technologies that make up the various components of a fuel cell automobile have advanced to acceptable levels of cost performance reliability durability and safety. Above all a substantial advancement in the fuel cell stack is required.
Deep Reinforcement Learning Based Energy Management Strategy for Fuel Cell/Battery/Supercapacitor Powered Electric Vehicle
Sep 2022
Publication
Vehicles using a single fuel cell as a power source often have problems such as slow response and inability to recover braking energy. Therefore the current automobile market is mainly dominated by fuel cell hybrid vehicles. In this study the fuel cell hybrid commercial vehicle is taken as the research object and a fuel cell/ battery/supercapacitor energy topology is proposed and an energy management strategy based on a doubledelay deep deterministic policy gradient is designed for this topological structure. This strategy takes fuel cell hydrogen consumption fuel cell life loss and battery life loss as the optimization goals in which supercapacitors play the role of coordinating the power output of the fuel cell and the battery providing more optimization ranges for the optimization of fuel cells and batteries. Compared with the deep deterministic policy gradient strategy (DDPG) and the nonlinear programming algorithm strategy this strategy has reduced hydrogen consumption level fuel cell loss level and battery loss level which greatly improves the economy and service life of the power system. The proposed EMS is based on the TD3 algorithm in deep reinforcement learning and simultaneously optimizes a number of indicators which is beneficial to prolong the service life of the power system.
High Technical and Temporal Resolution Integrated Energy System Modelling of Industrial Decarbonisation
Aug 2022
Publication
Owing to the complexity of the sector industrial activities are often represented with limited technological resolution in integrated energy system models. In this study we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals hydrocarbons ammonia and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes namely a bio-based industry a hydrogen-based industry a fully electrified industry and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass hydrogen and natural gas prices carbon storage potentials technological learning and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based hydrogen-based fully electrified and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally we reveal that based on the current (2022) energy prices the energy transition is cost-effective and fossil fuels can be fully displaced from industry and the national mix by 2050
Economic Analysis of a Zero-carbon Liquefied Hydrogen Tanker Ship
Jun 2022
Publication
The green hydrogen economy is considered one of the sustainable solutions to mitigate climate change. This study provides an economic analysis of a novel liquified hydrogen (LH2) tanker fuelled by hydrogen with a total capacity of ~280000 m3 of liquified hydrogen named ‘JAMILA’. An established economic method was applied to investigate the economic feasibility of the JAMILA ship as a contribution to the future zero-emission target. The systematic economic evaluation determined the net present value of the LH2 tanker internal rate of return payback period and economic value added to support and encourage shipyards and the industrial sector in general. The results indicate that the implementation of the LH2 tanker ship can cover the capital cost of the ship within no more than 2.5 years which represents 8.3% of the assumed 30-year operational life cycle of the project in the best maritime shipping prices conditions and 6 years in the worst-case shipping marine economic conditions. Therefore the assessment of the economic results shows that the LH2 tankers may be a worthwhile contribution to the green hydrogen economy.
Comparison of Alternative Marine Fuels
Sep 2019
Publication
The overall ambition of the study has been to assess the commercial and operational viability of alternative marine fuels based on review existing academic and industry literature. The approach assesses how well six alternative fuels perform compared to LNG fuel on a set of 11 key parameters. Conventional fuels are not covered in this study however 2020 compliant fuels (HFO+scrubber and low sulphur fuels are included in the conclusion for comparative purposes.
A Review of Key Components of Hydrogen Recirculation Subsystem for Fuel Cell Vehicles
Jul 2022
Publication
Hydrogen energy and fuel cell technology are critical clean energy roads to pursue carbon neutrality. The proton exchange membrane fuel cell (PEMFC) has a wide range of commercial application prospects due to its simple structure easy portability and quick start-up. However the cost and durability of the PEMFC system are the main barriers to commercial applications of fuel cell vehicles. In this paper the core hydrogen recirculation components of fuel cell vehicles including mechanical hydrogen pumps ejectors and gas–water separators are reviewed in order to understand the problems and challenges in the simulation design and application of these components. The types and working characteristics of mechanical pumps used in PEMFC systems are summarized. Furthermore corresponding design suggestions are given based on the analysis of the design challenges of the mechanical hydrogen pump. The research on structural design and optimization of ejectors for adapting wide power ranges of PEMFC systems is analyzed. The design principle and difficulty of the gas–water separator are summarized and its application in the system is discussed. In final the integration and control of hydrogen recirculation components controlled cooperatively to ensure the stable pressure and hydrogen supply of the fuel cell under dynamic loads are reviewed.
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Centralized and Decentralized Electrolysis-based Hydrogen Supply Systems for Road Transportation - A Modeling Study of Current and Future Costs
Oct 2022
Publication
This work compares the costs of three electrolysis-based hydrogen supply systems for heavy road transportation: a decentralized off-grid system for hydrogen production from wind and solar power (Dec-Sa); a decentralized system connected to the electricity grid (Dec-Gc); and a centralized grid-connected electrolyzer with hydrogen transported to refueling stations (Cen-Gc). A cost-minimizing optimization model was developed in which the hydrogen production is designed to meet the demand at refueling stations at the lowest total cost for two timeframes: one with current electricity prices and one with estimated future prices. The results show that: For most of the studied geographical regions Dec-Gc gives the lowest costs of hydrogen delivery (2.2e3.3V/kgH2) while Dec-Sa entails higher hydrogen production costs (2.5e6.7V/kgH2). In addition the centralized system (Cen-Gc) involves lower costs for production and storage than the grid-connected decentralized system (Dec-Gc) although the additional costs for hydrogen transport increase the total cost (3.5e4.8V/kgH2).
Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells
Oct 2020
Publication
The increasing energy demand and the subsequent climate change consequences are supporting the search for sustainable alternatives to fossil fuels. In this scenario the link between hydrogen and renewable energy is playing a key role and unitized hydrogen-chlorine (H2-Cl2) regenerative cells (RFCs) have become promising candidates for renewable energy storage. Described herein are the recent advances in cell configurations and catalysts for the different reactions that may take place in these systems that work in both modes: electrolysis and fuel cell. It has been found that platinum (Pt)-based catalysts are the best choice for the electrode where hydrogen is involved whereas for the case of chlorine ruthenium (Ru)-based catalysts are the best candidates. Only a few studies were found where the catalysts had been tested in both modes and recent advances are focused on decreasing the amount of precious metals contained in the catalysts. Moreover the durability of the catalysts tested under realistic conditions has not been thoroughly assessed becoming a key and mandatory step to evaluate the commercial viability of the H2-Cl2 RFC technology.
Low-Carbon Economic Dispatch of Integrated Energy Systems in Industrial Parks Considering Comprehensive Demand Response and Multi-Hydrogen Supply
Mar 2024
Publication
To address the increasing hydrogen demand and carbon emissions of industrial parks this paper proposes an integrated energy system dispatch strategy considering multi-hydrogen supply and comprehensive demand response. This model adopts power-to-gas technology to produce green hydrogen replacing a portion of gray hydrogen and incorporates a carbon capture system to effectively reduce the overall carbon emissions of the industrial park. Meanwhile incentive-based and price-based demand response strategies are implemented to optimize the load curve. A scheduling model is established targeting the minimization of procurement operation carbon emission and wind curtailment costs. The case study of a northern industrial park in China demonstrates that the joint supply of green and gray hydrogen reduces carbon emissions by 40.98% and costs by 17.93% compared to solely using gray hydrogen. The proposed approach successfully coordinates the economic and environmental performance of the integrated energy system. This study provides an effective scheduling strategy for industrial parks to accommodate high shares of renewables while meeting hydrogen needs and carbon reduction targets.
Effect of Carbon Concentration and Carbon Bonding Type on the Melting Characteristics of Hydrogen-reduced Iron Ore Pellets
Oct 2022
Publication
Decarbonization of the steel industry is one of the pathways towards a fossil-fuel-free environment. The steel industry is one of the top contributors to greenhouse gas emissions. Most of these emissions are directly linked to the use of a fossil-fuelbased reductant. Replacing the fossil-based reductant with green H2 enables the transition towards a fossil-free steel industry. The carbon-free iron produced will cause the refining and steelmaking operations to have a starting point far from today’s operations. In addition to carbon being an alloying element in steel production carbon addition controls the melting characteristics of the reduced iron. In the present study the effect of carbon content and form (cementite/graphite) in hydrogen-reduced iron ore pellets on their melting characteristics was examined by means of a differential thermal analyser and optical dilatometer. Carburized samples with a carbon content < 2 wt % did not show any initial melting at the eutectic temperature. At and above 2 wt % the carburized samples showed an initial melting at the eutectic temperature irrespective of the carbon content. However the absorbed heat varies with varied carbon content. The carbon form does not affect the initial melting temperature but it affects the melting progression. Carburized samples melt homogenously while melting of iron-graphite mixtures occurs locally at the interface between iron and carbon particles and when the time is not long enough melting might not occur to any significant extent. Therefore at any given carbon content > 2 wt % the molten fraction is higher in the case of carburized samples which is indicated by the amount of absorbed melting heat.
Performance and Weight Parameters Calculation for Hydrogen and Battery-Powered Aircraft Concepts
May 2023
Publication
This article describes the creation of a program that would be useful for calculating mathematical models in order to estimate the weight of aircraft components. Using several parameters it can calculate other parameters of civil transport aircraft powered by batteries or fuel cells. The main goals of this research were to add the missing dimensions and parameters to the aircraft database create a simple but effective program for creating mathematical models and use this program to find technological barriers to battery or hydrogen fuel-cell-powered aircraft concepts. The article introduces the reader to the problem of calculating OEW (operating empty weight) using Breguet– Leduc equations. A calculation model was created for OEW calculation. The result of this work is the verification of a mathematical model for battery-powered electric aircraft of the CS-23 (European Aviation Safety Agency Certification Specification for Normal Utility Aerobatic and Commuter Category Aeroplanes) category by comparing the program’s outputs with real aircraft. Subsequently the results of mathematical models are shown in graphs that specify the space of possible concepts of aircraft powered by batteries or fuel cells sorted by the number of passengers and the range of the aircraft delimited by two or three criteria respectively.
Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit
Aug 2022
Publication
The production of fat steel products is commonly linked to highly integrated sites which include hot metal generation via the blast furnace basic oxygen furnace (BOF) continuous casting and subsequent hot-rolling. In order to reach carbon neutrality a shift away from traditional carbon-based metallurgy is required within the next decades. Direct reduction (DR) plants are capable to support this transition and allow even a stepwise reduction in CO2 emissions. Nevertheless the implementation of these DR plants into integrated metallurgical plants includes various challenges. Besides metallurgy product quality and logistics special attention is given on future energy demand. On the basis of carbon footprint methodology (ISO 14067:2019) diferent scenarios of a stepwise transition are evaluated and values of possible CO2equivalent (CO2eq) reduction are coupled with the demand of hydrogen electricity natural gas and coal. While the traditional blast furnace—BOF route delivers a surplus of electricity in the range of 0.7 MJ/kg hot-rolled coil; this surplus turns into a defcit of about 17 MJ/ kg hot-rolled coil for a hydrogen-based direct reduction with an integrated electric melting unit. On the other hand while the product carbon footprint of the blast furnace-related production route is 2.1 kg CO2eq/kg hot-rolled coil; this footprint can be reduced to 0.76 kg CO2eq/kg hot-rolled coil for the hydrogen-related route provided that the electricity input is from renewable energies. Thereby the direct impact of the processes of the integrated site can even be reduced to 0.15 kg CO2eq/ kg hot-rolled coil. Yet if the electricity input has a carbon footprint of the current German or European electricity grid mix the respective carbon footprint of hot-rolled coil even increases up to 3.0 kg CO2eq/kg hot-rolled coil. This underlines the importance of the availability of renewable energies.
Decarbonisation Options for the Cement Industry
Jan 2023
Publication
The cement industry is a building block of modern society and currently responsible for around 7% of global and 4% of EU CO2 emissions. While facing global competition and a challenging business environment the EU cement sector needs to decarbonise its production processes to comply with the EU’s ambitious 2030 and 2050 climate targets. This report provides a snapshot of the current cement production landscape and discusses future technologies that are being explored by the sector to decarbonise its processes describing the transformational change the industry faces. This report compiles the current projects and announcements to deploy breakthrough technologies which do require high capital investments. However with 2050 just one investment cycle away the sector needs to commercialise new low-CO2 technologies this decade to avoid the risk of stranded assets. As Portland cement production is highly CO2-intensive and EU plants are already operating close to optimum efficiency the industry appears to be focussing on carbon capture storage and utilisation technologies - while breakthroughs in alternative chemistries are still being explored - to reduce emissions. While the EU has played an important role in supporting early stage R&D for these technologies it is now striving to fill the funding gap for the commercialisation of breakthrough technologies. The recent momentum towards CO2-free cement provides the EU with the opportunity to be a frontrunner in creating markets for green cement.
Thermodynamic Analysis of Methanol, Ammonia, and Hydrogen as Alternative Fuels in HCCI Engines
May 2023
Publication
The present study enters in the context of reducing harmful emissions of the marine fleet by using three of the most promising alternative fuels namely methanol ammonia and hydrogen. These fuels are to be examined from the perspective of both the first and second laws of thermodynamics when employed in turbocharged and intercooled Homogeneous Charge Compression Ignition Engines (HCCI) under various values of ambient temperature and equivalence ratio. Results showed that the highest engine performance values favour using ammonia as fuel followed in order by hydrogen and methanol. Furthermore most of the exergy destruction rates (65.26% ammonia to 84.02% for hydrogen) of the exergy destruction rate occurring in the engine take place in the HCCI engine.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
Review of Energy Challenges and Horizons of Hydrogen City Buses
Sep 2022
Publication
This paper discusses fuel cell electric vehicles and more specifically the challenges and development of hydrogen-fueled buses for people accessing this transportation in cities and urban environments. The study reveals the main innovations and challenges in the field of hydrogen bus deployment and identifies the most common approaches and errors in this area by extracting and critically appraising data from sources important to the energy perspective. Three aspects of the development and horizons of fuel cell electric buses are reviewed namely energy consumption energy efficiency and energy production. The first is associated with the need to ensure a useful and sustainable climate-neutral public transport. Herewith the properties of the hydrogen supply of electric buses and their benefits over gasoline gas and battery vehicles are discussed. The efficiency issue is related to the ratio of consumed and produced fuel in view of energy losses. Four types of engines–gasoline diesel gas and electrical–are evaluated in terms of well-to-wheel tank-to-wheel delivery and storage losses. The third problem arises from the production operating and disposal constraints of the society at the present juncture. Several future-oriented initiatives of the European Commission separate countries and companies are described. The study shows that the effectiveness of the FCEBs depends strongly on the energy generation used to produce hydrogen. In the countries where the renewables are the main energy sources the FCEBs are effective. In other regions they are not effective enough yet although the future horizons are quite broad.
No more items...