Applications & Pathways
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen quality control with regard to contaminants high sensitivity integration parameters and low cost are the most important requirements. In this study we have reviewed the existing sensor technologies to detect contaminants in hydrogen then discussed the implementation of sensors at a hydrogen refueling stations described the state-of-art in protocols to perform assessment of these sensor technologies and finally identified the gaps and needs in these areas. It was clear that sensors are not yet commercially available for all gaseous contaminants mentioned in ISO14687:2019. The development of standardized testing protocols is required to go hand in hand with the development of chemical sensors for this application following a similar approach to the one undertaken for air sensors.
Renewable Hydrogen Potential for Low-carbon Retrofit of the Building Stocks
Dec 2015
Publication
Energy-related GHG emissions mainly from fossil fuels combustion account for around 70% of total emissions. Those emissions are the target of the recent sustainability policies. Indeed renewables exploitation is considered widely the weapon to deal with this challenge thanks to their carbon neutrality. But the biggest drawback is represented by the mismatching between their production and users consumption. The storage would be a possible solution but its viability consists of economic sustainability and energy process efficiency as well. The cutting edge technologies of batteries have not still solved these issues at the same time. So a paradigm shift towards the identification of an energy carrier as storage option the so called Power-to-Gas could be the viable solution. From viability to feasibility a mandatory step is required: the opportunity to integrate the new solution in the proven infrastructures system. Thus the recent studies on Hydrogen (H2) enrichment in Natural Gas demonstrating a lower environmental impact and an increase in energy performance are the base to build the hydrogen transition in the urban environment. The aim of this paper is to evaluate the environmental benefits at building and district scale.
High Energy Density Storage of Gaseous Marine Fuels: An Innovative Concept and its Application to a Hydrogen Powered Ferry
Apr 2020
Publication
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue considering compressed gases and presents an innovative solution which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells fuelled by hydrogen. In particular a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board taking into account boundary conditions such as filling time on shore storage capacity and cylinder wall temperature. The simulation results show that if the fuel cells system is run continuously at steady state to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system assessed on the basis of the containment system outer dimensions is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out as expected that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless for specific application such as the one considered in the paper the introduction of gaseous hydrogen as fuel can be considered for implementing zero local emission propulsion system in the medium term.
Everything About Hydrogen Podcast: Commercial Trucking at the Speed of Hydrogen
Jun 2021
Publication
The transportation and mobility sector is vast complex unwieldy and most excitingly an obvious area of focus for hydrogen fuel cell technology applications. Hydrogen FCEVs allow vehicles to run in a wide range of environments with zero tailpipe emissions and can do so without the need for extremely heavy battery cells and can be refueled in the same amount of time as a modern ICE vehicle. This makes hydrogen FCEVs an ideal fit for the heavy commercial transportation industry and is why Hyzon Motors has jumped at the opportunity to revolutionize the industry. The company has grabbed headlines all over the world with its ambitious plans for rolling out its trucks in the United States and other major markets. It has also made news with its recent announcement that the company is going public and has attracted significant investor interest. The EAH team is joined on this episode by Hyzon's CEO Craig Knight to talk about how the company is tackling some of the most significant challenges in decarbonizing transport and how it can make trucking a zero-emission operation.
The podcast can be found on their website
The podcast can be found on their website
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Sustainability Assessment of Fuel Cell Buses in Public Transport
May 2018
Publication
Hydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses in terms of affordability achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.
Flexible Electricity Use for Heating in Markets with Renewable Energy
Mar 2020
Publication
Using electricity for heating can contribute to decarbonization and provide flexibility to integrate variable renewable energy. We analyze the case of electric storage heaters in German 2030 scenarios with an open-source electricity sector model. We find that flexible electric heaters generally increase the use of generation technologies with low variable costs which are not necessarily renewables. Yet making customary night-time storage heaters temporally more flexible offers only moderate benefits because renewable availability during daytime is limited in the heating season. Respective investment costs accordingly have to be very low in order to realize total system cost benefits. As storage heaters feature only short-term heat storage they also cannot reconcile the seasonal mismatch of heat demand in winter and high renewable availability in summer. Future research should evaluate the benefits of longer-term heat storage.
Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
Feb 2017
Publication
Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74% wind turbine of 45% electrolysis of 67% and fuel cells of 40%.
Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources
Jan 2023
Publication
To become sustainable the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field ORC fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail both separately and under a more complete view considering two or more solutions embedded in micro-grid configurations.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates
Jan 2023
Publication
In this study a green hydrogen system was studied to provide electricity for an office building in the Sharjah emirate in the United Arab Emirates. Using a solar PV a fuel cell a diesel generator and battery energy storage; a hybrid green hydrogen energy system was compared to a standard hybrid system (Solar PV a diesel generator and battery energy storage). The results show that both systems adequately provided the power needed for the load of the office building. The cost of the energy for both the basic and green hydrogen energy systems was 0.305 USD/kWh and 0.313 USD/kWh respectively. The cost of the energy for both systems is very similar even though the capital cost of the green hydrogen energy system was the highest value; however the replacement and operational costs of the basic system were higher in comparison to the green hydrogen energy system. Moreover the impact of the basic system in terms of the carbon footprint was more significant when compared with the green hydrogen system. The reduction in carbon dioxide was a 4.6 ratio when compared with the basic system.
Solid-State Hydrogen Fuel by PSII–Chitin Composite and Application to Biofuel Cell
Dec 2021
Publication
Biomaterials attract a lot of attention as next-generation materials. Especially in the energy field fuel cells based on biomaterials can further develop clean next-generation energy and are focused on with great interest. In this study solid-state hydrogen fuel (PSII–chitin composite) composed of the photosystem II (PSII) and hydrated chitin composite was successfully created. Moreover a biofuel cell consisting of the electrolyte of chitin and the hydrogen fuel using the PSII– chitin composite was fabricated and its characteristic feature was investigated. We found that proton conductivity in the PSII–chitin composite increases by light irradiation. This result indicates that protons generate in the PSII–chitin composite by light irradiation. It was also found that the biofuel cell using the PSII–chitin composite hydrogen fuel and the chitin electrolyte exhibits the maximum power density of 0.19 mW/cm2 . In addition this biofuel cell can drive an LED lamp. These results indicate that the solid-state biofuel cell based on the bioelectrolyte “chitin” and biofuel “the PSII–chitin composite” can be realized. This novel solid-state fuel cell will be helpful to the fabrication of next-generation energy.
Hydrogen-powered Aviation and its Reliance on Green Hydrogen Infrastructure - Review and Research Gaps
Oct 2021
Publication
Aircraft powered by green hydrogen (H2) are a lever for the aviation sector to reduce the climate impact. Previous research already focused on evaluations of H2 aircraft technology but analyses on infrastructure related cost factors are rarely undertaken. Therefore this paper aims to provide a holistic overview of previous efforts and introduces an approach to assess the importance of a H2 infrastructure for aviation. A short and a medium-range aircraft are modelled and modified for H2 propulsion. Based on these a detailed cost analysis is used to compare both aircraft and infrastructure related direct operating costs (DOC). Overall it is shown that the economy of H2 aviation highly depends on the availability of low-cost green liquid hydrogen (LH2) supply infrastructure. While total DOC might even slightly decrease in a best LH2 cost case total DOC could also increase between 10 and 70% (short-range) and 15e102% (medium-range) due to LH2 costs alone.
Numerical Study on Tri-fuel Combustion: Ignition Properties of Hydrogen-enriched Methane-diesel and Methanol-diesel Mixtures
Jan 2020
Publication
Simultaneous and interactive combustion of three fuels with differing reactivities is investigated by numerical simulations. In the present study conventional dual-fuel (DF) ignition phenomena relevant to DF compression ignition (CI) engines are extended and explored in tri-fuel (TF) context. In the present TF setup a low reactivity fuel (LRF) methane or methanol is perfectly mixed with hydrogen and air to form the primary fuel blend at the lean equivalence ratio of 0.5. Further such primary fuel blends are ignited by a high-reactivity fuel (HRF) here n-dodecane under conditions similar to HRF spray assisted ignition. Here ignition is relevant to the HRF containing parts of the tri-fuel mixtures while flame propagation is assumed to occur in the premixed LRF/ containing end gas regions. The role of hydrogen as TF mixture reactivity modulator is explored. Mixing is characterized by n-dodecane mixture fraction ξ and molar ratio . When x < 0.6 minor changes are observed for the first- and second-stage ignition delay time (IDT) of tri-fuel compared to dual-fuel blends (x = 0). For methane when x > 0.6 first- and second-stage IDT increase by factor 1.4–2. For methanol a respective decrease by factor 1.2–2 is reported. Such contrasting trends for the two LRFs are explained by reaction sensitivity analysis indicating the importance of OH radical production/consumption in the ignition process. Observations on LRF/ end gas laminar flame speed () indicate that increases with x due to the highly diffusive features of . For methane increase with x is more significant than for methanol.
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Regional Uptake of Direct Reduction Iron Production Using Hydrogen Under Climate Policy
Nov 2022
Publication
The need to reduce CO2 emissions to zero by 2050 has meant an increasing focus on high emitting industrial sectors such as steel. However significant uncertainties remain as to the rate of technology diffusion across steel production pathways in different regions and how this might impact on climate ambition. Informed by empirical analysis of historical transitions this paper presents modelling on the regional deployment of Direction Reduction Iron using hydrogen (DRI-H2). We find that DRI-H2 can play a leading role in the decarbonisation of the sector leading to near-zero emissions by 2070. Regional spillovers from early to late adopting regions can speed up the rate of deployment of DRI-H2 leading to lower cumulative emissions and system costs. Without such effects cumulative emissions are 13% higher than if spillovers are assumed and approximately 15% and 20% higher in China and India respectively. Given the estimates of DRI-H2 cost-effectiveness relative to other primary production technologies we also find that costs increase in the absence of regional spillovers. However other factors can also have impacts on deployment emission reductions and costs including the composition of the early adopter group material efficiency improvements and scrap recycling rates. For the sector to achieve decarbonisation key regions will need to continue to invest in low carbon steel projects recognising their broader global benefit and look to develop and strengthen policy coordination on technologies such as DRI-H2.
Integrating a Top-Gas Recycling and CO2 Electrolysis Process for H2-Rich Gas Injection and Reduce CO2 Emissions from an Ironmaking Blast Furnace
Mar 2022
Publication
Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2–CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9–10.9 m3/tHM of H2 saved 1 kg/tHM coke rate depending on injection position. Compared with the traditional blast furnace injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.
Evolutions in Hydrogen and Fuel Cell Standardization: The HarmonHy Experience
Dec 2007
Publication
HarmonHy is a European Union-funded Specific Support Action aiming to make an assessment of the activities on hydrogen and fuel cell regulations codes and standards (RCS) on a worldwide level. On this basis gaps have been identified and potential conflicts between regulations codes and standards have been investigated. Types of document to be referred to include international regional and national standards EU directives UNECE regulations… Particular attention will be paid to the identification of the needs for standards as perceived by the industry as well as to actions aiming to ensure concordance between standards codes and regulations. Standards and regulations require harmonization. HarmonHy pursues the elaboration of an action plan and a roadmap for future work on harmonizing regulations codes and standards on hydrogen and fuel cells on an international level.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
Fuel Cell Solution for Marine Applications
Sep 2021
Publication
With future regulations on the horizon port authorities and ship owners/operators are looking at alternative propulsion solutions to reduce emission. Fuel cell technology provides an attractive zeroemission solution to generate electric power on board using hydrogen as a fuel. Fuel cell systems are scalable from 200kW to multi-MW providing high efficiency dispatchable clean quiet power generation. Several innovative pilot projects are on the way to demonstrate the marine application of this proven technology. Electrification of propulsion systems is advancing and fuel cell technology provides the opportunity to produce on board large quantity of power with zero-emission using hydrogen as a fuel. We will present the value proposition of having a fuel cell power generator on board of an electric vessel while discussing the safety considerations with the fuel cell module and the onboard fuel storage. We will present some of our current fuel cell marine projects and review some of the product development considerations including system architecture and safety as well as hydrogen supply and on-board fuel storage.
No more items...