Applications & Pathways
Modelling Methodologies to Design and Control Renewables and Hydrogen-Based Telecom Towers Power Supply Systems
Aug 2023
Publication
Proton exchange membrane fuel cell (PEMFCS) and electrolyser (PEMELS) systems together with a hydrogen storage tank (HST) are suitable to be integrated with renewable microgrids to cover intermittency and fully exploit the excess of electrical energy. Such an integration perfectly fits telecom tower power supply needs both in off-grid and grid-connected sites. In this framework a model-based tool enabling both optimal sizing and proper year-through energy management of both the above applications is proposed. Respectively the islanded optimisation is performed considering two economic indices i.e. simple payback (SPB) and levelised cost of energy (LCOE) together with two strategies of hydrogen tank management charge sustaining and depleting and also accounting for the impact of grid extension distance. On the other hand the grid connection is addressed through the dynamic programming method while downsizing PEMELS and HST sizes to improve techno-economic effectiveness thanks to grid contribution towards renewables curtailment issues mitigation. For both the above introduced HST management strategies a reduction of more than 70% of the nominal PEMELS power and 90% of the HST size which will in turn lead to SPB and LCOE being reduced by 80% and 60% in comparison to the islanded case respectively is achieved. Furthermore the charge depleting strategy relying on possible hydrogen purchase interestingly provides an SPB and LCOE of 9% and 7% lower than the charge sustaining one.
Energy and Greenhouse Gases Life Cycle Assessment of Electric and Hydrogen Buses: A Real-world Case Study in Bolzano Italy
May 2023
Publication
The transportation sector plays an important role in the current effort towards the control of global warming. Against this backdrop electrification is currently attracting attention as the life cycle environmental performance of different powertrain technologies is critically assessed. In this study a life cycle analysis of the public transportation buses was performed. The scope of the analysis is to compare the energy and global warming performances of the different powertrain technologies in the city fleet: diesel full electric and hydrogen buses. Real world monitored data were used in the analysis for the energy consumptions of the buses and to produce hydrogen in Bolzano. Compared to the traditional diesel buses the electric vehicles showed a 43% reduction of the non-renewable primary energy demand and a 33% of the global warming potential even in the worst consequential scenario considered. The switch to hydrogen buses leads to very different environmental figures: from very positive if it contributes to a further penetration of renewable electricity to hardly any difference if hydrogen from steam-methane reforming is used to clearly negative ones (approximately doubling the impacts) if a predominantly fossil electricity mix is used in the electrolysis.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending
Jun 2023
Publication
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition and cause detonation-type engine knock that limits the global equivalence ratio and consequently the engine power. The very low flame speed and reactivity of ammonia can lead to a low heat release rate and cause difficulty in ignition and ammonia slip. Adding ammonia into hydrogen can effectively modulate flame speed and hence the heat release rate which in turn mitigates engine knock and retains the zero-carbon nature of the system. However a key issue that remains unclear is the blending ratio of NH3 that provides the desired heat release rate emission level and engine power. In the present work a 3D computational combustion study is conducted to search for the optimal hydrogen/ammonia mixture that is knock-free and meanwhile allows sufficient power in a typical spark-ignition engine configuration. Parametric studies with varying global equivalence ratios and hydrogen/ammonia blends are conducted. The results show that with added ammonia engine knock can be avoided even under stoichiometric operating conditions. Due to the increased global equivalence ratio and added ammonia the energy content of trapped charge as well as work output per cycle is increased. About 90% of the work output of a pure gasoline engine under the same conditions can be reached by hydrogen/ammonia blends. The work shows great potential of blended fuel or hydrogen/ammonia dual fuel in high-speed SI engines.
Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine
Jun 2023
Publication
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine’s performance. Engine indication allowed for the determination of key combustion stages including ignition delay combustion time and the angle of 50% heat release. Furthermore important operational parameters such as indicated pressure thermal efficiency and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation as measured by the COVIMEP value. Regarding emissions hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO CO2 and soot emissions while NO and HC emissions increased.
Hydrogen Fuel Cell Vehicles: Opportunities and Challenges
Jul 2023
Publication
This paper provides an in-depth review of the current state and future potential of hydrogen fuel cell vehicles (HFCVs). The urgency for more eco-friendly and efficient alternatives to fossilfuel-powered vehicles underlines the necessity of HFCVs which utilize hydrogen gas to power an onboard electric motor producing only water vapor and heat. Despite their impressive energy efficiency ratio (EER) higher power-to-weight ratio and substantial emissions reduction potential the widespread implementation of HFCVs is presently hindered by several technical and infrastructural challenges. These include high manufacturing costs the relatively low energy density of hydrogen safety concerns fuel cell durability issues insufficient hydrogen refueling infrastructure and the complexities of hydrogen storage and transportation. Nevertheless technological advancements and potential policy interventions offer promising prospects for HFCVs suggesting they could become a vital component of sustainable transportation in the future.
Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System
Aug 2023
Publication
The latest International Maritime Organization strategies aim to reduce 70% of the CO2 emissions and 50% of the Greenhouse Gas (GHG) emissions from maritime activities by 2050 compared to 2008 levels. The EU has set up goals to reduce GHG emissions by at least 55% by 2030 compared to 1990 and achieve net-zero GHG emissions by 2050. The UK aims to achieve more than 68% GHG emission reduction by 2030 and net-zero GHG emissions by 2050. There are many solutions under development to tackle the challenge of meeting the latest decarbonization strategies from the IMO EU and UK among which are hydrogen powered marine vessels. This paper presents a life cycle analysis study for hydrogen fuelled vessels by evaluating their performance in terms of environmental friendliness and economic feasibility. The LCA study will consider the gas emissions and costs during the life stages of the ships including the construction operation maintenance and recycling phases of the selected vessels. The results of the comparisons with the conventional version of the ships (driven by diesel generators) demonstrate the benefits of using hydrogen for marine transportation: over 80% emission reduction and around 60% life cycle cost savings. A sensitivity analysis shows that the prices of fuels and carbon credits can affect the life cycle cost and recommendations for low H2 price and high carbon credit in the future are provided to attract the industry to adopt the new fuel.
Assessing Techno-economic Feasibility of Cogeneration and Power to Hydrogen Plants: A Novel Dynamic Simulation Model
Aug 2023
Publication
Green hydrogen technologies are crucial for decarbonization purposes while cogeneration offers efficient heat and power generation. Integrating green hydrogen and cogeneration brings numerous benefits optimizing energy utilization reducing emissions and supporting the transition to a sustainable future. While there are numerous studies examining the integration of combined heat and power with Power to Gas certain aspects still requires a more detailed analysis especially for internal combustion engines fuelled by natural gas due to their widespread adoption as one of the primary technologies in use. Therefore this paper presents a comprehensive numerical 0-D dynamic simulation model implemented within the TRNSYS environment considering internal combustion engines fuelled by natural gas. Specifically the study focuses on capturing CO2 from exhaust gases and producing green hydrogen from electrolysis. Based on these considerations two configurations are proposed: the first involves the methanation reaction while the second entails the production of a hydromethane mixture. The aim is to evaluate the technical and economic feasibility of these configurations and compare their performance within the Power to Gas framework. Self-sufficiency from the national electricity grid has been almost achieved for the two configurations considering an industrial case. The production of hydromethane allows smaller photovoltaic plant (81 kWp) compared to the production of synthetic methane (670 kWp) where a high quantity of hydrogen is required especially if all the carbon dioxide captured is used in the methanation process. Encouraging economic results with payback times below ten years have been obtained with the use of hydromethane. Moreover hydromethane shows potential residential applications with small required photovoltaic sizes.
A Physics Constrained Methodology for the Life Cycle Assessment of Sustainable Aviation Fuel Production
May 2024
Publication
Feedstock-to-fuel conversion or “Fuel Production” is a major contributor to greenhouse gas (GHG) emissions in life cycle assessment (LCA) of sustainable aviation fuels (SAF) from wastes. Here we construct and demonstrate an original mass and energy conserved chemically rigorous LCA methodology for the production of Hydroprocessed Esters and Fatty Acids-Synthetic Paraffinic Kerosene (HEFA-SPK) from Used Cooking Oil (UCO). This study proposes and demonstrates the use of; (i) the chemical composition of the UCO (ii) the ASTM properties of HEFA-SPK and (iii) the elemental mass and energy conserved reaction mechanism which converts one to the other as physical constraints for the specific LCA of any UCO derived HEFA-SPK. With application of these constraints the emissions embodied in UCO HEFA-SPK Fuel Production is found to range from 4.2 to 15.7 gCO2e/MJSAF depending on the renewability of the energy and hydrogen utilized. Imposition of (i)-(iii) as modelling constraints derives a HEFA-SPK yield of 49 mass% a priori. This finding aligns with experimental literature but brings attention to the higher yield estimations of 70–81% observed in current LCA tools. We show that this impacts the end LCA significantly as it adjusts allocation of emissions. A replication study of CORSIA’s (10.5 gCO2e/MJSAF) default core LCA value for Fuel Production quantifies the increase at +5.3 gCO2e/MJSAF or 15.8 gCO2e/MJSAF as total for Fuel Production. As the embodied emissions are significantly dependent on the specifics of the scenario assessed we highlight reporting a definitive GHG intensity for any UCO derived HEFA-SPK as generic will be inaccurate to an extent.
Hydrogen as a Deep Sea Shipping Fuel: Modelling the Volume Requirements
May 2024
Publication
Recent targets have increased pressure for the maritime sector to accelerate the uptake of clean fuels. A potential future fuel for shipping is hydrogen however there is a common perception that the volume requirements for this fuel are too large for deep sea shipping. This study has developed a range of techniques to accurately simulate the fuel requirements of hydrogen for a case study vessel. Hydrogen can use fuel cells which achieve higher efficiencies than combustion methods but may require a battery hybrid system to meet changes in demand. A series of novel models for different fuel cell types and other technologies have been developed. The models have been used to run dynamic simulations for different energy system setups. Simulations tested against power profiles from real-world shipping data to establish the minimum viable setup capable of meeting all the power demand for the case study vessel to a higher degree of accuracy than previously achieved. Results showed that the minimum viable setup for hydrogen was with liquid storage a 105.6 MW PEM fuel cell stack and 6.9 MWh of batteries resulting in a total system size of 8934 m3 . Volume requirement results could then be compared to other concepts such as systems using ammonia and methanol 8970 m3 and 6033 m3 respectively.
Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints
Apr 2024
Publication
In the context of “dual carbon” restrictions on carbon emissions have aĴracted widespread aĴention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids we propose a multi-microgrid electricity cooperation optimization scheduling strategy based on stepped carbon trading a hydrogen-doped natural gas system and P2G–CCS coupled operation. Firstly a multi-energy microgrid model is developed coupled with hydrogendoped natural gas system and P2G–CCS and then carbon trading and a carbon emission restriction mechanism are introduced. Based on this a model for multi-microgrid electricity cooperation is established. Secondly design optimization strategies for solving the model are divided into the dayahead stage and the intraday stage. In the day-ahead stage an improved alternating direction multiplier method is used to distribute the model to minimize the cooperative costs of multiple microgrids. In the intraday stage based on the day-ahead scheduling results an intraday scheduling model is established and a rolling optimization strategy to adjust the output of microgrid equipment and energy purchases is adopted which reduces the impact of uncertainties in new energy output and load forecasting and improves the economic and low-carbon operation of multiple microgrids. SeĴing up different scenarios for experimental validation demonstrates the effectiveness of the introduced low-carbon policies and technologies as well as the effectiveness of their synergistic interaction
How do Variations in Ship Operation Impact the Techno-economic Feasibility and Environmental Performance of Fossil-free Fuels? A Life Cycle Study
Aug 2023
Publication
Identifying an obvious non-fossil fuel solution for all ship types for meeting the greenhouse gas reduction target in shipping is challenging. This paper evaluates the technical viability environmental impacts and economic feasibility of different energy carriers for three case vessels of different ship types: a RoPax ferry a tanker and a service vessel. The energy carriers examined include battery-electric and three electro-fuels (hydrogen methanol and ammonia) which are used in combination with engines and fuel cells. Three methods are used: preliminary ship design feasibility life cycle assessment and life cycle costing. The results showed that battery-electric and compressed hydrogen options are not viable for some ships due to insufficient available onboard space for energy storage needed for the vessel's operational range. The global warming reduction potential is shown to depend on the ship type. This reduction potential of assessed options changes also with changes in the carbon intensity of the electricity mix. Life cycle costing results shows that the use of ammonia and methanol in engines has the lowest life cycle cost for all studied case vessels. However the higher energy conversion losses of these systems make them more vulnerable to fluctuations in the price of electricity. Also these options have higher environmental impacts on categories like human toxicity resource use (minerals and metals) and water use. Fuel cells and batteries are not as cost-competitive for the case vessels because of their higher upfront costs and shorter lifetimes. However these alternatives are less expensive than alternatives with internal combustion engines in the case of higher utilization rates and fuel costs.
Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model
May 2024
Publication
Efficiently predicting and understanding refuelling patterns in the context of HFVs is paramount for optimising fuelling processes infrastructure planning and facilitating vehicle operation. This study evaluates several supervised machine learning methodologies for predicting the refuelling behaviour of HFVs. The LightGBM model emerged as the most effective predictive model due to its ability to handle time series and seasonal data. The selected model integrates various input variables encompassing refuelling metrics day of the week and weather conditions (e.g. temperature precipitation) to capture intricate patterns and relationships within the data set. Empirical testing and validation against real-world refuelling data underscore the efficacy of the LightGBM model demonstrating a minimal deviation from actual data given limited data and thereby showcasing its potential to offer valuable insights to fuelling station operators vehicle manufacturers and policymakers. Overall this study highlights the potential of sustainable predictive modelling for optimising fuelling processes infrastructure planning and facilitating vehicle operation in the context of HFVs.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Green Hydrogen for Ammonia Production - A Case for the Netherlands
Jul 2023
Publication
An integrated system is studied to supply green hydrogen feedstock for ammonia production in the Netherlands. The system is modeled to compare wind and solar resources when coupled to Alkaline Electrolysis (AEL) and Proton Exchange Membrane Electrolysis (PEMEL) technologies with a compressed hydrogen storage system. The nominal installed capacity of the electrolysis plant is around 2.3 GW with the most suitable energy source offshore wind and the preferred storage technology pressurized tubes. For Alkaline Electrolysis and Proton Exchange Membrane Electrolysis technologies the levelized cost of hydrogen is 5.30 V/kg H2 and 6.03 V/kg H2 respectively.
Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control
May 2024
Publication
The results shown in this paper extend our research group’s previous work which presents the theoretically achievable hydrogen engine-out NOeo x (H2-NOeo x ) Pareto front of a hydrogen hybrid electric vehicle (H2-HEV). While the Pareto front is calculated offline which requires significant computing power and time this work presents an online-capable algorithm to tackle the energy management of a H2-HEV with explicit consideration of the H2-NOeo x trade-off. Through the inclusion of realistic predictive data on the upcoming driving mission a model predictive control algorithm (MPC) is utilized to effectively tackle the conflicting goal of achieving low hydrogen consumption while simultaneously minimizing NOeo x . In a case study it is shown that MPC is able to satisfy user-defined NOeo x limits over the course of various driving missions. Moreover a comparison with the optimal Pareto front highlights MPC’s ability to achieve close-to-optimal fuel performance for any desired cumulated NOeo x target on four realistic routes for passenger cars.
The Economic Impact and Carbon Footprint Dependence of Energy Management Strategies in Hydrogen-Based Microgrids
Sep 2023
Publication
This paper presents an economic impact analysis and carbon footprint study of a hydrogenbased microgrid. The economic impact is evaluated with respect to investment costs operation and maintenance (O&M) costs as well as savings taking into account two different energy management strategies (EMSs): a hydrogen-based priority strategy and a battery-based priority strategy. The research was carried out in a real microgrid located at the University of Huelva in southwestern Spain. The results (which can be extrapolated to microgrids with a similar architecture) show that although both strategies have the same initial investment costs (EUR 52339.78) at the end of the microgrid lifespan the hydrogen-based strategy requires higher replacement costs (EUR 74177.4 vs. 17537.88) and operation and maintenance costs (EUR 35254.03 vs. 34877.08) however it provides better annual savings (EUR 36753.05 vs. 36282.58) and a lower carbon footprint (98.15% vs. 95.73% CO2 savings) than the battery-based strategy. Furthermore in a scenario where CO2 emission prices are increasing the hydrogen-based strategy will bring even higher annual cost savings in the coming years.
Development of a Fuel Cell-based System for Refrigerated Transport
Nov 2012
Publication
Benchmark refrigerated systems in the road transportation sector are powered by diesel having operation costs of up to 6000 €/y. This paper presents the development of an alternative refrigeration system based on fuel cells with higher efficiency reduced costs and independent of diesel price fluctuations. Energy load profiles have been analyzed and the fuel cell stack and auxiliaries are being modeled in order to dimension and design a balance of plant and control algorithms that ensure a safe and easy utilization. Additionally a prototype shall be tested under different load profiles to validate the control strategies and to characterize the performance of the system.
Optimal Capacity Configuration of Wind–Solar Hydrogen Storage Microgrid Based on IDW-PSO
Aug 2023
Publication
Because the new energy is intermittent and uncertain it has an influence on the system’s output power stability. A hydrogen energy storage system is added to the system to create a wind light and hydrogen integrated energy system which increases the utilization rate of renewable energy while encouraging the consumption of renewable energy and lowering the rate of abandoning wind and light. Considering the system’s comprehensive operation cost economy power fluctuation and power shortage as the goal considering the relationship between power generation and load assigning charging and discharging commands to storage batteries and hydrogen energy storage and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system. The optimal configuration model of the wind solar and hydrogen microgrid system capacity is constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO) is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally a microgrid system in Beijing is taken as an example for simulation and solution and the results demonstrate that the proposed approach has the characteristics to optimize the economy and improve the capacity of renewable energy consumption realize the inhibition of the fluctuations of power reduce system power shortage and accelerate the convergence speed.
No more items...