Applications & Pathways
Hydrogen Diffusion and Its Effect on Hydrogen Embrittlement in DP Steels with Different Martensite Content
Dec 2020
Publication
The hydrogen diffusion behavior and hydrogen embrittlement susceptibility of dual phase (DP) steels with different martensite content were investigated using the slow strain-rate tensile test and hydrogen permeation measurement. Results showed that a logarithmic relationship was established between the hydrogen embrittlement index (IHE) and the effective hydrogen diffusion coefficient (Deff). When the martensite content is low ferrite/ martensite interface behaves as the main trap that captures the hydrogen atoms. Also when the Deff decreases IHE increases with increasing martensite content. However when the martensite content reaches approximately 68.3% the martensite grains start to form a continuous network Deff reaches a plateau and IHE continues to increase. This is mainly related to the reduction of carbon content in martensite and the length of ferrite/martensite interface which promotes the diffusion of hydrogen atoms in martensite and the aggregation of hydrogen atoms at the ferrite/martensite interface. Finally a model describing the mechanism of microstructure-driven hydrogen diffusion with different martensite distribution was established.
Energy Transition in Aviation: The Role of Cryogenic Fuels
Dec 2020
Publication
Aviation is the backbone of our modern society. In 2019 around 4.5 billion passengers travelled through the air. However at the same time aviation was also responsible for around 5% of anthropogenic causes of global warming. The impact of the COVID-19 pandemic on the aviation sector in the short term is clearly very high but the long-term effects are still unknown. However with the increase in global GDP the number of travelers is expected to increase between three- to four-fold by the middle of this century. While other sectors of transportation are making steady progress in decarbonizing aviation is falling behind. This paper explores some of the various options for energy carriers in aviation and particularly highlights the possibilities and challenges of using cryogenic fuels/energy carriers such as liquid hydrogen (LH2) and liquefied natural gas (LNG).
Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment
Jan 2022
Publication
Hydrogen (H2 ) is currently a highly attractive fuel for internal combustion engines (ICEs) owing to the prospects of potentially near-zero emissions. However the production emissions and cost of H2 fuel necessitate substantial improvements in ICE thermal efficiency. This work aims to investigate a potential implementation of H2 combustion in a highly efficient double compression-expansion engine (DCEE). DICI nonpremixed H2 combustion mode is used for its superior characteristics as concluded in previous studies. The analysis is performed using a 1D GT-Power software package where different variants of the DICI H2 and diesel combustion cycles obtained experimentally and numerically (3D CFD) are imposed in the combustion cylinder of the DCEE. The results show that the low jet momentum free jet mixing dominated variants of the DICI H2 combustion concept are preferred owing to the lower heat transfer losses and relaxed requirements on the fuel injection system. Insulation of the expander and removal of the intercooling improve the engine efficiency by 1.3 and 0.5 %-points respectively but the latter leads to elevated temperatures in the high-pressure tank which makes the selection of its materials harder but allows the use of cheaper oxidation catalysts. The results also show that the DCEE performance is insensitive to combustion cylinder temperatures making it potentially suitable for other high-octane fuels such as methane methanol ammonia etc. Finally a brake thermal efficiency of 56 % is achieved with H2 combustion around 1 %-point higher than with diesel. Further efficiency improvements are also possible with a fully optimized H2 combustion system.
A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis
Mar 2022
Publication
New energy vehicles (NEVs) especially electric vehicles (EVs) address the important task of reducing the greenhouse effect. It is particularly important to measure the environmental efficiency of new energy vehicles and the life cycle analysis (LCA) model provides a comprehensive evaluation method of environmental efficiency. To provide researchers with knowledge regarding the research trends of LCA in NEVs a total of 282 related studies were counted from the Web of Science database and analyzed regarding their research contents research preferences and research trends. The conclusion drawn from this research is that the stages of energy resource extraction and collection carrier production and energy transportation maintenance and replacement are not considered to be research links. The stages of material equipment and car transportation and operation equipment settling and forms of use need to be considered in future research. Hydrogen fuel cell electric vehicles (HFCEVs) vehicle type classification the water footprint battery recovery and reuse and battery aging are the focus of further research and comprehensive evaluation combined with more evaluation methods is the direction needed for the optimization of LCA. According to the results of this study regarding EV and hybrid power vehicles (including plug-in hybrid electric vehicles (PHEV) fuel-cell electric vehicles (FCEV) hybrid electric vehicles (HEV) and extended range electric vehicles (EREV)) well-to-wheel (WTW) average carbon dioxide (CO2 ) emissions have been less than those in the same period of gasoline internal combustion engine vehicles (GICEV). However EV and hybrid electric vehicle production CO2 emissions have been greater than those during the same period of GICEV and the total CO2 emissions of EV have been less than during the same period of GICEV.
From Microcars to Heavy-Duty Vehicles: Vehicle Performance Comparison of Battery and Fuel Cell Electric Vehicles
Oct 2021
Publication
Low vehicle occupancy rates combined with record conventional vehicle sales justify the requirement to optimize vehicle type based on passengers and a powertrain with zero-emissions. This study compares the performance of different vehicle types based on the number of passengers/payloads powertrain configuration (battery and fuel cell electric configurations) and drive cycles to assess range and energy consumption. An adequate choice of vehicle segment according to the real passenger occupancy enables the least energy consumption. Vehicle performance in terms of range points to remarkable results for the FCEV (fuel cell electric vehicle) compared to BEV (battery electric vehicle) where the former reached an average range of 600 km or more in all different drive cycles while the latter was only cruising nearly 350 km. Decisively the cost analysis indicated that FCEV remains the most expensive option with base cost three-fold that of BEV. The FCEV showed notable results with an average operating cost of less than 7 cents/km where BEV cost more than 10 €/km in addition to the base cost for light-duty vehicles. The cost analysis for a bus and semi-truck showed that with a full payload FCPT (fuel cell powertrain) would be more economical with an average energy cost of ~1.2 €/km while with BPT the energy cost is more than 300 €/km
Repurposing Fischer-Tropsch and Natural Gas as Bridging Technologies for the Energy Revolution
Jun 2022
Publication
Immediate and widespread changes in energy generation and use are critical to safeguard our future on this planet. However while the necessity of renewable electricity generation is clear the aviation transport and mobility chemical and material sectors are challenging to fully electrify. The age-old Fischer-Tropsch process and natural gas industry could be the bridging solution needed to accelerate the energy revolution in these sectors – temporarily powering obsolete vehicles acting as renewable energy’s battery supporting expansion of hydrogen fuel cell technologies and the agricultural and waste sectors as they struggle to keep up with a full switch to biofuels. Natural gas can be converted into hydrogen synthetic natural gas or heat during periods of low electricity demand and converted back to electricity again when needed. Moving methane through existing networks and converting it to hydrogen on-site at tanking stations also overcomes hydrogen distribution storage problems and infrastructure deficiencies. Useful co-products include carbon nanotubes a valuable engineering material that offset emissions in the carbon nanotube and black industries. Finally excess carbon can be converted back into syngas if desired. This flexibility and the compatibility of natural gas with both existing and future technologies provides a unique opportunity to rapidly decarbonise sectors struggling with complex requirements.
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs as this determines the cell losses and material characterization of the various cell components. When this is done properly it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment which also needs to be considered in future research activities.
Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application
Jun 2022
Publication
The power management strategy (PMS) is intimately linked to the fuel economy in the hybrid electric vehicle (HEV). In this paper a hybrid power management scheme is proposed; it consists of an adaptive neuro-fuzzy inference method (ANFIS) and the equivalent consumption minimization technique (ECMS). Artificial intelligence (AI) is a key development for managing power among various energy sources. The hybrid power supply is an eco-acceptable system that includes a proton exchange membrane fuel cell (PEMFC) as a primary source and a battery bank and ultracapacitor as electric storage systems. The Haar wavelet transform method is used to calculate the stress (σ) on each energy source. The proposed model is developed in MATLAB/Simulink software. The simulation results show that the proposed scheme meets the power demand of a typical driving cycle i.e. Highway Fuel Economy Test Cycle (HWFET) and Worldwide Harmonized Light Vehicles Test Procedures (WLTP—Class 3) for testing the vehicle performance and assessment has been carried out for various PMS based on the consumption of hydrogen overall efficiency state of charge of ultracapacitors and batteries stress on hybrid sources and stability of the DC bus. By combining ANFIS and ECMS the consumption of hydrogen is minimized by 8.7% compared to the proportional integral (PI) state machine control (SMC) frequency decoupling fuzzy logic control (FDFLC) equivalent consumption minimization strategy (ECMS) and external energy minimization strategy (EEMS).
Hydrogen Technology Towards the Solution of Environment-Friendly New Energy Vehicles
Aug 2021
Publication
The popularity of climate neutral new energy vehicles for reduced emissions and improved air quality has been raising great attention for many years. World-wide a strong commitment continues to drive the demand for zero-emission through alternative energy sources and propulsion systems. Despite the fact that 71.27% of hydrogen is produced from natural gas green hydrogen is a promising clean way to contribute to and maintain a climate neutral ecosystem. Thereby reaching CO2 targets for 2030 and beyond requires cross-sectoral changes. However the strong motivation of governments for climate neutrality is challenging many sectors. One of them is the transport sector as it is challenged to find viable all-in solutions that satisfy social economic and sustainable requirements. Currently the use of new energy vehicles operating on green sustainable hydrogen technologies such as batteries or fuel cells has been the focus for reducing the mobility induced emissions. In Europe 50% of the total emissions result from mobility. The following article reviews the background ongoing challenges and potentials of new energy vehicles towards the development of an environmentally friendly hydrogen economy. A change management process mindset has been adapted to discuss the key scientific and commercial challenges for a successful transition.
Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry
May 2021
Publication
In April 2018 the International Maritime Organisation adopted an ambitious plan to contribute to the global efforts to reduce the Greenhouse Gas emissions as set by the Paris Agreement by targeting a 50% reduction in shipping’s Green House Gas emissions by 2050 benchmarked to 2008 levels. To meet these challenging goals the maritime industry must introduce environmentally friendly fuels with negligible or low SOX NOX and CO2 emissions. Ammonia use in maritime applications is considered promising due to its high energy density low flammability easy storage and low production cost. Moreover ammonia can be used as fuel in a variety of propulsors such as fuel cells and can be produced from renewable sources. As a result ammonia can be used as a versatile marine fuel exploiting the existing infrastructure and having zero SOX and CO2 emissions. However there are several challenges to overcome for ammonia to become a compelling fuel towards the decarbonisation of shipping. Such factors include the selection of the appropriate ammonia-fuelled power generator the selection of the appropriate system safety assessment tool and mitigating measures to address the hazards of ammonia. This paper discusses the state-of-the-art of ammonia fuelled fuel cells for marine applications and presents their potential and challenges.
Iron as Recyclable Energy Carrier: Feasibility Study and Kinetic Analysis of Iron Oxide Reduction
Oct 2022
Publication
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution especially for stationary applications could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. Based on equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Based on thermogravimetric experiments using Fe2O3 Fe3O4 and FeO it could be shown that the reduction is a three-step process. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
A Case Study Using Hydrogen Fuel Cell as Range Extender for Lithium Battery Electric Vehicle
Mar 2024
Publication
This paper presents a case study of a lithium battery and fuel cell integrated powertrain system for a renewable energy vehicle. The performance analysis includes evaluating the energy consumption of the vehicle and the efficiency of the power generation components. When driven solely by the lithium battery at average speeds of 15 km/h and 20 km/h it was observed that speed significantly influences the travel distance of the vehicle with higher speeds resulting in lower mileage. The energy efficiency rates were found to be 89.3% and 85.7% at speeds of 15 km/h and 20 km/h respectively indicating an 18.1% decrease in efficiency from low to higher speeds. When the lithium battery is solely charged by the hydrogen fuel cell the efficiency under test conditions reaches approximately 32.5%. In the “FC + B + SC” driving mode which combines the use of the lithium battery fuel cell and solar panel to power the vehicle the travel range can be extended to 50.62 km and 42.05 km respectively representing an increase of over 50% with overall efficiencies of 63.8% and 60.7% respectively. This hybrid powertrain system exhibits rapid dynamic response high energy and power density and enables longer travel distances for the renewable energy vehicle.
A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments
Mar 2020
Publication
The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018 the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however different power systems are used: main engine generators polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Further these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems it is shown that ammonia can be a carbon-free fuel for ships. Moreover among the proposed systems the SOFC power system is the most eco-friendly alternative (up to 92.1%) even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions the results indicate a meaningful approach toward solving GHG problems in the maritime industry.
Jet Zero Strategy: Delivering Net Zero Aviation by 2050
Jul 2022
Publication
The Jet Zero strategy sets out how we will achieve net zero aviation by 2050.<br/>It focuses on the rapid development of technologies in a way that maintains the benefits of air travel whilst maximising the opportunities that decarbonisation can bring to the UK.<br/>The Jet Zero strategy includes a 5-year delivery plan setting out the actions that will need to be taken in the coming years to support the delivery of net zero aviation by 2050. We will be monitoring progress and reviewing and updating our strategy every 5 years.<br/>The strategy is informed by over 1500 responses to the Jet Zero consultation and the Jet Zero further technical consultation to which we have issued a summary of responses and government response.<br/>The Jet Zero investment flightpath is part of a series of roadmaps to be published over the course of 2022 for each sector of the Prime Minister’s Ten point plan for a green industrial revolution.<br/>It showcases the UK’s leading role in the development and commercialisation of new low and zero emission aviation technologies. It also highlights investment opportunities across systems efficiencies sustainable aviation fuels and zero emission aircraft.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
Carbon Capture and Biomass in Industry: A Techno-economic Analysis and Comparison of Negative Emission Options
Apr 2021
Publication
Meeting the Paris Agreement will most likely require the combination of CO2 capture and biomass in the industrial sector resulting in net negative emissions. CO2 capture within the industry has been extensively investigated. However biomass options have been poorly explored with literature alluding to technical and economic barriers. In addition a lack of consistency among studies makes comparing the performance of CO2 capture and/or biomass use between studies and sectors difficult. These inconsistencies include differences in methodology system boundaries level of integration costs greenhouse gas intensity of feedstock and energy carriers and capital cost estimations. Therefore an integrated evaluation of the techno-economic performance regarding CO2 capture and biomass use was performed for five energy-intensive industrial sub-sectors. Harmonization results indicate that CO2 mitigation potentials vary for each sub-sector resulting in reductions of 1.4–2.7 t CO2/t steel (77%–149%) 0.7 t CO2/t cement (92%) 0.2 t CO2/t crude oil (68%) 1.9 t CO2/t pulp (1663%–2548%) and 34.9 t CO2/t H2 (313%). Negative emissions can be reached in the steel paper and H2 sectors. Novel bio-based production routes might enable net negative emissions in the cement and (petro) chemical sectors as well. All the above-mentioned potentials can be reached for 100 €/t CO2 or less. Implementing mitigation options could reduce industrial CO2 emissions by 10 Gt CO2/y by 2050 easily meeting the targets of the 2 ◦C scenario by the International Energy Agency (1.8 Gt CO2/y reduction) for the industrial sector and even the Beyond 2 ◦C scenario (4.2 Gt CO2/y reduction).
Jet Zero Strategy: One Year On
Jul 2023
Publication
This report sets out progress against our strategic framework for decarbonising aviation as well as the latest aviation emissions data and updated Jet Zero analysis.<br/>Among the significant milestones achieved since the Jet Zero strategy launch are the:<br/>- agreement at the International Civil Aviation Organization for a long-term aspirational goal for aviation of net zero 2050 carbon dioxide (CO2) emissions for international aviation<br/>- publication of the 2040 zero emissions airport target call for evidence<br/>significant progress on sustainable aviation fuels (SAF) including:<br/>- publishing the second SAF mandate consultation<br/>- launching a second round of the Advanced Fuels Fund<br/>- publishing the Philip New report and the government response on how to develop a UK SAF industry<br/>- publication of the government response to the UK ETS consultation setting out a range of commitments that will enhance the effectiveness of the UK Emissions Trading Scheme (ETS) for aviation<br/>- launch of the expressions of interest for 2 DfT- funded research projects into aviation’s non-CO2 impacts<br/>The report also acknowledges that big challenges remain and we need to continue to work across the aviation sector and with experts across the economy to ensure we continue to make progress on our path to decarbonise aviation.
Low-Carbon Strategic Planning of Integrated Energy Systems
Mar 2022
Publication
With the rapid promotion of renewable energy technologies and the trend to a low-carbon society the positive impacts of an integrated energy system that realizes various forms of energy-utilizing improvement and carbon reduction have fully emerged. Hydrogen with a decarbonized characteristic being integrated into the integrated energy system has become a viable option to offset the intermittency of renewables and decline the fossil fuel usage. An optimal planning model of a wind–photovoltaic–hydrogen storage-integrated energy system with the objective of total economic and environmental cost minimization by considering various energy technology investments is proposed. Case studies are developed to compare the economic and environmental benefits of different energy investment scenarios especially hydrogen applications. The cost–benefit analysis was carried out to prove that hydrogen investment is not a cost-competitive option but can alleviate the burden of carbon emissions somehow. Finally sensitivity analysis of key parameters of sale capacity carbon tax and renewable penetration level was performed to indicate the rational investment for a wind–photovoltaic–hydrogen storage-integrated energy system.
On the Road to Sustainable Transport: Acceptance and Preferences for Renewable Fuel Production Infrastructure
Sep 2022
Publication
To abate climate change and ameliorate the air quality in urban areas innovative solutions are required to reduce CO2 and pollutant emissions from traffic. Alternative fuels made from biomass or CO2 and hydrogen can contribute to these goals by substituting fossil gasoline or diesel in combustion engines. Using a conjoint analysis approach the current study investigates preferences of laypeople (n = 303) for fuel production facilities in terms of siting location plant size raw material used in the production and raw material transport. The location was most decision-relevant followed by raw material transport whereas plant size and type of raw material played a less prominent role for the preference choice. The best-case scenario from the point of view of acceptance would be the installation of a rather small bio-hybrid fuel production plant in an industrial area (instead of an agricultural or pristine environment). No transport or transport via underground pipeline were preferred over truck/tank car or overground pipeline. The findings can be used as a basis for planning and decision-making for designing production networks for new fuel types.
The Spatio-Temporal Evolution of China’s Hydrogen Fuel Cell Vehicle Innovation Network: Evidence From Patent Citation at Provincial Level
Oct 2021
Publication
Hydrogen fuel cell vehicle industry is in a rapid development stage. Studying the domestic spatial distribution of hydrogen fuel cell vehicle industry across a country especially the spatio-temporal evolution of the innovation level and position of each region in innovation network will help to understand the industry’s development trends and characteristics and avoid repeated construction. This article uses social network analysis and patent citation information of 2971 hydrogen fuel cell vehicle related invention patents owned by 218 micro-innovators across 25 provinces of China from 2001 to 2020 to construct China’s hydrogen fuel cell vehicle innovation network. Based on the dimensions of knowledge production knowledge consumption and network broker the network positions of sample provinces in three periods divided by four main national policies are classified. The main findings are as follows. 1) In China the total sales of hydrogen fuel cell vehicle and the development of supporting infrastructure are balanced and a series of national and local industrial development polices have been issued. 2) China’s hydrogen fuel cell vehicle innovation network density the proportion of universities and research institutes among the innovators and the active degree of the eastern provinces are all becoming higher. 3) The provinces in optimal network position are all from the eastern region. Shanghai and Liaoning are gradually replaced by Beijing and Jiangsu. 4) Sichuan in the western region is the only network broker based on knowledge consumption. 5) Although Zhejiang Tianjin Hebei Guangdong and Hubei are not yet in the optimal position they are outstanding knowledge producers. Specifically Guangdong is likely to climb to the optimal network position in the next period. The conclusions will help China’s provinces to formulate relevant development policies to optimize industry layout and enhance collaborative innovation in the hydrogen fuel cell vehicle industry.
No more items...