Applications & Pathways
Performance and Failure Analysis of a Retrofitted Cessna Aircraft with a Fuel Cell Power System Fuelled with Liquid Hydrogen
Jan 2022
Publication
Proton-Exchange Membrane-Fuel Cells (PEM-FC) are regarded as one of the prime candidates to provide emissions-free electricity for propulsion systems of aircraft. Here a turbocharged Fuel Cell Power System (FCPS) powered with liquid H2 (LH2) is designed and modelled to provide a primary power source in retrofitted Cessna 208 Caravan aircraft. The proposed FCPS comprises multiple PEM-FCs assembled in stacks two single-stage turbochargers to mitigate the variation of the ambient pressure with altitude two preheaters two humidifiers and two combustors. Interlinked component sub-models are constructed in MATLAB and referenced to commercially available equipment. The FCPS model is used to simulate steady-state responses in a proposed 1.5 h (∼350 km) mission flight determining the overall efficiency of the FCPS at 43% and hydrogen consumption of ∼28 kg/h. The multi-stack FCPS is modelled applying parallel fluidic and electrical architectures analysing two power-sharing methods: equally distributed and daisy-chaining. The designed LH2-FCPS is then proposed as a power system to a retrofitted Cessna 208 Caravan and with this example analysed for the probability of failure occurrence. The results demonstrate that the proposed “dual redundant” FCPS can reach failure rates comparable to commercial jet engines with a rate below 1.6 failures per million hours.
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
Oct 2022
Publication
The energy transition with transformation into predominantly renewable sources requires technology development to secure power production at all times despite the intermittent nature of the renewables. Micro gas turbines (MGTs) are small heat and power generation units with fast startup and load-following capability and are thereby suitable backup for the future’s decentralized power generation systems. Due to MGTs’ fuel flexibility a range of fuels from high-heat to lowheat content could be utilized with different greenhouse gas generation. Developing micro gas turbines that can operate with carbon-free fuels will guarantee carbon-free power production with zero CO2 emission and will contribute to the alleviation of the global warming problem. In this paper the redevelopment of a standard 100-kW micro gas turbine to run with methane/hydrogen blended fuel is presented. Enabling micro gas turbines to run with hydrogen blended fuels has been pursued by researchers for decades. The first micro gas turbine running with pure hydrogen was developed in Stavanger Norway and launched in May 2022. This was achieved through a collaboration between the University of Stavanger (UiS) and the German Aerospace Centre (DLR). This paper provides an overview of the project and reports the experimental results from the engine operating with methane/hydrogen blended fuel with various hydrogen content up to 100%. During the development process the MGT’s original combustor was replaced with an innovative design to deal with the challenges of burning hydrogen. The fuel train was replaced with a mixing unit new fuel valves and an additional controller that enables the required energy input to maintain the maximum power output independent of the fuel blend specification. This paper presents the test rig setup and the preliminary results of the test campaign which verifies the capability of the MGT unit to support intermittent renewable generation with minimum greenhouse gas production. Results from the MGT operating with blended methane/hydrogen fuel are provided in the paper. The hydrogen content varied from 50% to 100% (volume-based) and power outputs between 35 kW to 100kW were tested. The modifications of the engine mainly the new combustor fuel train valve settings and controller resulted in a stable operation of the MGT with NOx emissions below the allowed limits. Running the engine with pure hydrogen at full load has resulted in less than 25 ppm of NOx emissions with zero carbon-based greenhouse gas production.
The Role of Hydrogen in Heavy Transport to Operate within Planetary Boundaries
Jul 2021
Publication
Green hydrogen i.e. produced from renewable resources is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind solar bioenergy with CCS nuclear and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e. below one-third of the global ecological budget in all the scenarios analysed). However the best scenarios in terms of climate change which are biomass-based would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast burden shifting in the electrolytic scenarios would be negligible with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China
Jul 2023
Publication
Global energy and environmental issues are becoming increasingly serious and the promotion of clean energy and green transportation has become a common goal for all countries. In the logistics industry traditional fuels such as diesel and natural gas can no longer meet the requirements of energy and climate change. Hydrogen fuel cell logistics vehicles are expected to become the mainstream vehicles for future logistics because of their “zero carbon” advantages. The GREET model is computer simulation software developed by the Argonne National Laboratory in the USA. It is extensively utilized in research pertaining to the energy and environmental impact of vehicles. This research study examines four types of logistics vehicles: hydrogen fuel cell vehicles (FCVs) electric vehicles LNG-fueled vehicles and diesel-fueled vehicles. Diesel-fueled logistics vehicles are currently the most abundant type of vehicle in the logistics sector. LNG-fueled logistics vehicles are considered as a short-term alternative to diesel logistics vehicles while electric logistics vehicles are among the most popular types of new-energy vehicles currently. We analyze and compare their well-to-wheels (WTW) energy consumption and emissions with the help of GREET software and conduct lifecycle assessments (LCAs) of the four types of vehicles to analyze their energy and environmental benefits. When comparing the energy consumption of the four vehicle types electric logistics vehicles (EVs) have the lowest energy consumption with slightly lower energy consumption than FCVs. When comparing the nine airborne pollutant emissions of the four vehicle types the emissions of the FCVs are significantly lower than those of spark-ignition internal combustion engine logistics vehicles (SI ICEVs) compression-ignition direct-injection internal combustion engine logistics vehicles (CIDI ICEVs) and EVs. This study fills a research gap regarding the energy consumption and environmental impact of logistics vehicles in China.
Energy Management Strategy Based on Dynamic Programming with Durability Extension for Fuel Cell Hybrid Tramway
Sep 2021
Publication
This paper proposes an energy management strategy for a fuel cell (FC) hybrid power system based on dynamic programming and state machine strategy which takes into account the durability of the FC and the hydrogen consumption of the system. The strategy first uses the principle of dynamic programming to solve the optimal power distribution between the FC and supercapacitor (SC) and then uses the optimization results of dynamic programming to update the threshold values in each state of the finite state machine to realize real-time management of the output power of the FC and SC. An FC/SC hybrid tramway simulation platform is established based on RTLAB real-time simulator. The compared results verify that the proposed EMS can improve the durability of the FC increase its working time in the high-efficiency range effectively reduce the hydrogen consumption and keep the state of charge in an ideal range.
A Review on Production and Implementation of Hydrogen as a Green Fuel in Internal Combustion Engines
Nov 2022
Publication
Huge and continuously growing non-renewable energy consumption due to human daily activities is accountable for the fossil fuel source crisis in recent decades. The growing concern about the emissions from internal combustion engines also impels the development of new energy sources to replace or reduce conventional non-renewable energy usage. In this context hydrogen is found to be a promising solution in internal combustion engines to address these issues. The novelty of this review is to provide an overview of the use of hydrogen as internal combustion fuel covering the operations in both spark-ignition (SI) and compression-ignition (CI) engines. Majority of the studies had shown that hydrogen enrichment fuels marked incredible engine performance in terms of thermal efficiency fuel consumption and energy consumption. In addition reductions in exhaust emissions such as smoke soot HC CO CO2 and NOx can be achieved in both SI and CI engines with proper operating conditions. Moreover outstanding combustion behaviours were observed in both internal combustion engines with the application of hydrogen fuel. These enhancements were mainly attributed to the physico-chemical properties of hydrogen which exhibits higher calorific value and rapid flaming speed as discussed in this paper. To summarize hydrogen utilisation in the IC and SI engines aided improvements in engine performance exhaust emissions and combustion behaviours under appropriate operating conditions and minor engine modifications such as ignition system and iridium spark plug for SI engines.
Feasibility of Hydrogen Fuel Cell Technology for Railway Intercity Services: A Case Study for the Piedmont in North Carolina
Jul 2021
Publication
Diesel fuel combustion results in exhaust containing air pollutants and greenhouse gas emissions. Many railway vehicles use diesel fuel as their energy source. Exhaust emissions as well as concerns about economical alternative power supply have driven efforts to move to hydrogen motive power. Hydrogen fuel cell technology applied to railways offers the opportunity to eliminate harmful exhaust emissions and the potential for a low- or zero-emission energy supply chain. Currently only multiple-unit trains with hydrail technology operate commercially. Development of an Integrated Hybrid Train Simulator for intercity railway is presented. The proposed tool incorporates the effect of powertrain components during the wheel-to-tank process. Compared to its predecessors the proposed reconfigurable tool provides high fidelity with medium requirements and minimum computation time. Single train simulation and the federal government’s Greenhouse gases Regulated Emissions and Energy use in Transportation (GREET) model are used in combination to evaluate the feasibility of various train and powertrain configurations. The Piedmont intercity service operating in North Carolina is used as a case study. The study includes six train configurations and powertrain options as well as nine hydrogen supply options in addition to the diesel supply. The results show that a hydrail option is not only feasible but a low- or zero-carbon hydrogen supply chain could be possible.
The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy
Oct 2022
Publication
The Italian Recovery and Resilience Plan promotes among its many actions the use of hydrogen by the deployment of refuelling stations for heavy-duty vehicles predicting a 5–7% penetration rate of fuel cell electric vehicles (FCEVs) for long-distance freight transport. In this work the impact of this action on the reduction of greenhouse gas emissions and consumption was estimated assuming the plan’s objectives are met. To achieve this aim a national simulation model of the road freight transport system was implemented consisting of a graph of the national road network and an inter-provincial origin-destination matrix; the graph was based on data available from OpenStreetMap while the interprovincial matrix was estimated from the interregional matrix with the use of two linear regression models one for emitted goods and one for attracted goods. The simulation of the system made it possible to estimate the impact of this action on CO2 emissions and fuel consumption under three different scenarios. From 2025 to 2040 a reduction in CO2 emissions ranging from around 9 to around 16.5 million tonnes was estimated and a reduction in consumption ranging from around 3 billion to around 5.6 billion litres of diesel. These results show how this action can be seen as one of the bricks contributing to the fight against global warming.
Cold Start Cycling Durability of Fuel Cell Stacks for Commercial Automotive Applications
Sep 2022
Publication
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated the resulting mechanical damage is investigated and degradation mechanisms are proposed. Overall only a small voltage drop is observed after the durability tests only minor damage occurs in the electrocatalyst layer and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.
Data-driven Scheme for Optimal Day-ahead Operation of a Wind/hydrogen System Under Multiple Uncertainties
Nov 2022
Publication
Hydrogen is believed as a promising energy carrier that contributes to deep decarbonization especially for the sectors hard to be directly electrified. A grid-connected wind/hydrogen system is a typical configuration for hydrogen production. For such a system a critical barrier lies in the poor cost-competitiveness of the produced hydrogen. Researchers have found that flexible operation of a wind/hydrogen system is possible thanks to the excellent dynamic properties of electrolysis. This finding implies the system owner can strategically participate in day-ahead power markets to reduce the hydrogen production cost. However the uncertainties from imperfect prediction of the fluctuating market price and wind power reduce the effectiveness of the offering strategy in the market. In this paper we proposed a decision-making framework which is based on data-driven robust chance constrained programming (DRCCP). This framework also includes multi-layer perception neural network (MLPNN) for wind power and spot electricity price prediction. Such a DRCCP-based decision framework (DDF) is then applied to make the day-ahead decision for a wind/hydrogen system. It can effectively handle the uncertainties manage the risks and reduce the operation cost. The results show that for the daily operation in the selected 30 days offering strategy based on the framework reduces the overall operation cost by 24.36% compared to the strategy based on imperfect prediction. Besides we elaborate the parameter selections of the DRCCP to reveal the best parameter combination to obtain better optimization performance. The efficacy of the DRCCP method is also highlighted by the comparison with the chance-constrained programming method.
Effects of Fuel Cell Size and Dynamic Limitations on the Durability and Efficiency of Fuel Cell Hybrid Electric Vehicles under Driving Conditions
Mar 2024
Publication
In order to enhance the durability of fuel cell systems in fuel cell hybrid electric vehicles (FCHEVs) researchers have been dedicated to studying the degradation monitoring models of fuel cells under driving conditions. To predict the actual degradation factors and lifespan of fuel cell systems a semi-empirical and semi-physical degradation model suitable for automotive was proposed and developed. This degradation model is based on reference degradation rates obtained from experiments under known conditions which are then adjusted using coefficients based on the electrochemical model. By integrating the degradation model into the vehicle simulation model of FCHEVs the impact of different fuel cell sizes and dynamic limitations on the efficiency and durability of FCHEVs was analyzed. The results indicate that increasing the fuel cell stack power improves durability while reducing hydrogen consumption but this effect plateaus after a certain point. Increasing the dynamic limitations of the fuel cell leads to higher hydrogen consumption but also improves durability. When considering only the rated power of the fuel cell a comparison between 160 kW and 100 kW resulted in a 6% reduction in hydrogen consumption and a 10% increase in durability. However when considering dynamic limitation factors comparing the maximum and minimum limitations of a 160 kW fuel cell hydrogen consumption increased by 10% while durability increased by 83%.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
THyGA - Long Term Effect of H2 on Appliances Tested
May 2023
Publication
The goals of the long-term tests were to see the impact of blends of hydrogen and natural gas on the technical condition of the appliances and their performance after several hours of operation. To do so they were run through an accelerated test program amounting to more than 3000 testing hours for the boilers and more than 2500 testing hours for the cookers. The percentage of hydrogen in the test gas was 30% by volume. Three boilers and two cookers were tested by DGC and two boilers by GWI. This report describes the test protocol the results and analysis on the seven appliances tested.
Global Warming Potential and Societal-governmental Impacts of the Hydrogen Ecosystem in the Transportation Sector
Apr 2024
Publication
The environmental and societal challenges of our contemporary society are leading us to reconsider our approaches to vehicle design. The aim of this article is to provide the reader with the essential knowledge needed to responsibly design a vehicle equipped with a hydrogen fuel cell system. Two pivotal aspects of hydrogen-electric powertrain eco-design are examined. First the global warming potential is assessed for both PEMFC systems and Type IV hydrogen tanks accounting for material extraction production and end-of-life considerations. The usage phase was omitted from the study in order to facilitate data adaptation for each type of use. PEMFC exhibits a global warming potential of about 29.2 kgCO2eq/kW while the tank records 12.4 kgCO2eq/kWh with transportation factors considered. Secondly the societal and governmental impacts are scrutinized with the carbon-intensive hydrogen tank emerging as having the most significant societal and governmental risks. In fact on a scale of 1–5 with 5 representing the highest level of risk the PEMFC system has a societal impact and governance risk of 2.98. The Type IV tank has a societal impact and governance risk of 3.31. Although uncertainties persist regarding the results presented in this study the values obtained provide an overview of the societal and governmental impacts of the hydrogen ecosystem in the transportation sector. The next step will be to compare for the same usage which solution between hydrogen-electric and 100% battery is more respectful of humans and the environment.
Refuelling Infrastructure Requirements for Renewable Hydrogen Road Fuel through the Energy Transition
Nov 2022
Publication
Current commercially available options for decarbonisation of road transport are battery electric vehicles or hydrogen fuel cell electric vehicles. BEVs are increasingly deployed while hydrogen is in its infancy. We examine the infrastructure necessary to support hydrogen fuelling to various degrees of market penetration. Scotland makes a good exemplar of transport transition with a world leading Net-Zero ambition and proven pathways for generating ample renewable energy. We identified essential elements of the new transport systems and the associated capital expenditure. We developed nine scenarios based on the pace of change and the ultimate market share of hydrogen and constructed a model to analyse their infrastructure requirements. This is a multi-period model incorporating Monte Carlo and Markov Chain elements. A “no-regrets” initial action is rapid deployment of enough hydrogen infrastructure to facilitate the early years of a scenario where diesel fuel becomes replaced with hydrogen. Even in a lower demand scenario of only large and heavy goods vehicles using hydrogen the same infrastructure would be required within a further two years. Subsequent investment in infrastructure could be considered in the light of this initial development.
Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen
Jan 2023
Publication
As the demand for eco-friendly energy increases hydrogen energy and liquid hydrogen storage technologies are being developed as an alternative. Hydrogen has a lower liquefaction point and higher thermal conductivity than nitrogen or neon used in general cryogenic systems. Therefore the application of hydrogen to cryogenic systems can increase efficiency and stability. This paper describes the design and analysis of a cryogenic cooling system for an electric propulsion system using liquid hydrogen as a refrigerant and energy source. The proposed aviation propulsion system (APS) consists of a hydrogen fuel cell a battery a power distribution system and a motor. For a lab-scale 5 kW superconducting motor using a 2G high-temperature superconducting (HTS) wire the HTS motor and cooling system were analyzed for electromagnetic and thermal characteristics using a finite element method-based analysis program. The liquid hydrogen-based cooling system consists of a pre-cooling system a hydrogen liquefaction system and an HTS coil cooling system. Based on the thermal load analysis results of the HTS coil the target temperature for hydrogen gas pre-cooling the number of buffer layers and the cryo-cooler capacity were selected to minimize the thermal load of the hydrogen liquefaction system. As a result the hydrogen was stably liquefied and the temperature of the HTS coil corresponding to the thermal load of the designed lab-scale HTS motor was maintained at 30 K.
Green Energy Hubs for the Military That Can Also Support he Civilian Mobility Sector with Green Hydrogen
May 2023
Publication
To support the energy transition in the area of defence we developed a tool and conducted a feasibility study to transform a military site from being a conventional energy consumer to becoming an energy-positive hub (or prosumer). Coupling a green energy source (e.g. photovoltaic wind) with fuel cells and hydrogen storage satisfied the dynamic energy consumption and dynamic hydrogen demand for both the civilian and military mobility sectors. To make the military sector independent of its civilian counterpart a military site was connected to a renewable energy hub. This made it possible to develop a stand-alone green-energy system transform the military site into a positive energy hub and achieve autonomous energy operation for several days or weeks. An environmental and economic assessment was conducted to determine the carbon footprint and the economic viability. The combined installed capacity of the solar power plant and the wind turbine was 2.5 times the combined peak consumption with about 19% of the total electricity and 7% of the hydrogen produced still available to external consumers.
Technological Pathways for Decarbonizing Petroleum Refining
Sep 2021
Publication
This paper discusses the technical specifications of how U.S. petroleum refineries can reduce facility emissions and shift to produce low-carbon fuels for hard to abate sectors by utilizing existing innovative technologies.
Low-carbon Economic Dispatch of Hydrogen-containing Integrated Energy System Considering Stepped Demand Response
Apr 2024
Publication
Vigorously developing an integrated energy system (IES) centered on the utilization of hydrogen energy is a crucial strategy to achieve the goal of carbon peaking and carbon neutrality. During the energy conversion process a hydrogen storage system releases a large amount of heat. By integrating a heat recovery mechanism we have developed a sophisticated hydrogen energy utilization model that accommodates multiple operational conditions and maximizes heat recovery thereby enhancing the efficiency of energy use on the supply side. To harness the potential of load-side response an integrated demand response (IDR) model accounting for price and incentives is established and a ladder-type subsidy incentive mechanism is proposed to deeply unlock load-side response capacity. Considering system economics and low carbon an IES source-load coordinated optimal scheduling model is proposed optimizing source-load coordinated operation for optimally integrated economy factoring in reward and punishment ladder-type carbon trading. Demonstrations reveal that the proposed methodology not only improves the efficiency of energy utilization but also minimizes wind energy wastage activates consumer engagement and reduces both system costs and carbon emissions thus proving the effectiveness of our optimization approach.
No more items...