Applications & Pathways
Performance and Emission Optimisation of an Ammonia/ Hydrogen Fuelled Linear Joule Engine Generator
Mar 2024
Publication
This paper presents a Linear Joule Engine Generator (LJEG) powered by ammonia and hydrogen co-combustion to tackle decarbonisation in the electrification of transport propulsion systems. A dynamic model of the LJEG which integrates mechanics thermodynamics and electromagnetics sub-models as well as detailed combustion chemistry analysis for emissions is presented. The dynamic model is integrated and validated and the LJEG performance is optimised for improved performance and reduced emissions. At optimal conditions the engine could generate 1.96 kWe at a thermal efficiency of 34.3% and an electrical efficiency of 91%. It is found that the electromagnetic force of the linear alternator and heat addition from the external combustor and engine valve timing have the most significant influences on performance whereas the piston stroke has a lesser impact. The impacts of hydrogen ratio oxygen concentration inlet pressure and equivalence ratio of ammonia-air on nitric oxide (NO) formation and reduction are revealed using a detailed chemical kinetic analysis. Results indicated that rich combustion and elevated pressure are beneficial for NO reduction. The rate of production analysis indicates that the equivalence ratio significantly changes the relative contribution among the critical NO formation and reduction reaction pathways.
Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization
Sep 2016
Publication
A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP) have been addressed for sizing HS-BH from a more comprehensive perspective considering the basic demand of load the profit from hydrogen which is produced by HS-BH and an effective energy storage strategy. An improved ant colony optimization (ACO) algorithm has been presented to solve the sizing problem of HS-BH. Finally a simulation experiment has been done to demonstrate the developed results in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang China.
Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage
Dec 2017
Publication
This paper presents a wind-methanol-fuel cell system with hydrogen storage. It can manage various energy flow to provide stable wind power supply produce constant methanol and reduce CO2 emissions. Firstly this study establishes the theoretical basis and formulation algorithms. And then computational experiments are developed with MATLAB/Simulink (R2016a MathWorks Natick MA USA). Real data are used to fit the developed models in the study. From the test results the developed system can generate maximum electricity whilst maintaining a stable production of methanol with the aid of a hybrid energy storage system (HESS). A sophisticated control scheme is also developed to coordinate these actions to achieve satisfactory system performance.
Thermodynamic and Emission Analysis of a Hydrogen/Methane Fueled Gas Turbine
May 2023
Publication
The importance of hydrogen in the effort to decarbonize the power sector has grown immensely in recent years. Previous studies have investigated the effects of mixing hydrogen into natural gas for gas turbine combustors but limited studies have examined the resulting effects hydrogen addition has on the entire system. In this work a thermodynamic model of a gas turbine with combustion chemical kinetics integrated is created and the effects hydrogen addition (0-100 volume percent addition) has on the system performance emissions and combustion kinetics are analyzed. The maximum system performance is achieved when the maximum turbine inlet temperature is reached and the resulting optimal fuel/air equivalence ratio is determined. As hydrogen is added to the fuel mixture the optimal equivalence ratio shifts leaner causing non-linearity in emissions and system performance at optimal conditions. An analysis of variance is conducted and it is shown that isentropic efficiencies of the turbine and compressor influences the system performance the most out of any system parameter. While isentropic efficiencies of the turbine and compressor increase towards 100% an operating regime where the optimal system efficiency cannot be achieved is discovered due to the lower flammability limit of the fuel being reached. This can be overcome by mixing hydrogen into the fuel.
Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies
Jun 2023
Publication
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials load alleviation techniques boundary layer ingestion and ultra-high bypass ratio engines. The hydrogen combustion configuration was compared to the configuration powered by kerosene with respect to geometric properties performance characteristics energy demand equivalent CO2 emissions and Direct Operating Costs. In addition technology sensitivity studies were performed to assess the potential influence of each technology on the configuration. A multi-fidelity sizing methodology using low- and mid-fidelity methods for rapid configuration sizing was created to assess the configuration and perform robust analyses and multi-disciplinary optimizations. To assess potential uncertainties of the fidelity of aerodynamic analysis tools high-fidelity aerodynamic analysis and optimization framework MACHAero was used for additional verification. Comparison of hydrogen and kerosene blended wing body aircraft showed a potential reduction of equivalent CO2 emission by 15% and 81% for blue and green hydrogen compared to the kerosene blended wing body and by 44% and 88% with respect to a conventional B777-300ER aircraft. Advancements in future technologies also significantly affect the geometric layout of aircraft. Boundary layer ingestion and ultra-high bypass ratio engines demonstrated the highest potential for fuel reduction although both technologies conflict with each other. However operating costs of hydrogen aircraft could establish a significant problem if pessimistic and base hydrogen price scenarios are achieved for blue and green hydrogen respectively. Finally configurational problems featured by classical blended wing body aircraft are magnified for the hydrogen case due to the significant volume requirements to store hydrogen fuel.
Future of Hydrogen in Industry: Initial Industrial Site Surveys
Jul 2023
Publication
This is a summary report of a study which aimed to understand the safety feasibility cost and impacts for 7 industrial sites to switch from natural gas to 100% hydrogen for heating. The volunteer industrial sites:<br/>♦ are located away from industrial clusters<br/>♦ use natural gas to meet most of their energy demand<br/>♦ will likely be most impacted by decisions on the future of the natural gas grid<br/>We have published the report in order to share its findings with other industrial sites and wider industry in particular those considering hydrogen as an option for decarbonisation.<br/>Note that:<br/>♦ some work was carried out on a non-hydrogen alternative energy source but to a lesser level of detail and not to determine the optimal decarbonisation solution<br/>♦ the findings do not apply to other end user environments because of differences between these environments and the consumption of gas<br/>The study was commissioned in 2022 by the former Department for Business and Energy and undertaken by AECOM and their safety sub-contractor ESR.<br/>The evidence will inform strategic decisions in 2026 on the role of low carbon hydrogen as a replacement for natural gas heating.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Prospects and Impediments for Hydrogen Fuel Cell Buses
Jun 2021
Publication
The number of demonstration projects with fuel cell buses has been increasing worldwide. The goal of this paper is to analyse prospects and barriers for fuel cell buses focusing on their economic- technical- and environmental performance. Our results show that the prices of fuel cell buses although decreasing over time are still about 40% higher than those of diesel buses. With the looming ban of diesel vehicles and current limitations of battery electric vehicles fuel cell buses could become a viable alternative in the mid-to long-term. With the requirements for a better integration of renewable energy sources in the transport system interest in hydrogen is rising. Hydrogen produced from renewables used in fuel cell buses has the potential to save about 93% of CO2 emissions in comparison to diesel buses. Yet from environmental point-of-view it has to be ensured that hydrogen is produced from renewables. Currently the major barrier for a faster penetration of fuel cell buses are their high purchase prices which could be significantly reduced with the increasing number of buses through technological learning. The final conclusion is that a tougher transport policy framework is needed which fully reflects the environmental impact of different buses used.
Synthetic Fuels in the German Industry Sector Depending on Climate Protection Level
Aug 2021
Publication
Especially the electrification of the industry sector is highly complex and challenging mainly due to process-specific requirements. In this context there are several industrial processes where the direct and indirect use of electricity is subject to technical restrictions. In order to achieve the national climate goals the fossil energy consumption remaining after the implementation of efficiency and sufficiency measures as well as direct electrification has to be substituted through hydrogen and synthetic gaseous liquid and solid hydrocarbons. As the main research object the role of synthetic fuels in industrial transformation paths is investigated and analyzed by combining individual greenhouse gas abatement measures within the Sector Model Industry. Sector Model Industry is an energy consumption model that performs discrete deterministic energy and emission dynamic calculations with a time horizon up to 2050 at macroeconomic level. The results indicate that the use of synthetic fuels can be expected with a high level of climate protection. The industrial CO2 target in the model makes it necessary to replace CO2 -intensive fossil with renewable fuels. The model uses a total of 163 TWh of synthetic fuels in the climate protection scenario and thus achieves an 88% decrease in CO2 emissions in 2050 compared to 1990. This means that the GHG abatement achieved in industry is within the range of the targeted CO2 mitigation of the overall system in Germany of between 80 and 95% in 2050 compared to 1990. Due to technical restrictions the model mainly uses synthetic methane instead of hydrogen (134 TWh). The results show that despite high costs synthetic fuels are crucial for defossilization as a fall back option in the industrial scenario considering high climate ambition. The scenario does not include hydrogen technologies for heat supply. Accordingly the climate protection scenario uses hydrogen only in the steel industry for the direct reduction of iron (21 TWh). 8 TWh of synthetic oil substitute the same amount of fossil oil in the climate protection scenario. A further analysis conducted on the basis of the model results shows that transformation in the energy system and the use of smart ideas concepts and technologies are a basic prerequisite for enabling the holistic defossilisation of industry. The findings in the research can contribute to the cost-efficient use of synthetic fuels in industry and thus serve as a basis for political decision making. Moreover the results may have a practical relevance not only serving as a solid comparison base for the outcome of other studies but also as input data for further simulation of energy system transformation paths.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Optimal Battery and Hydrogen Fuel Cell Sizing in Heavy-haul Locomotives
Jul 2023
Publication
Global supply chains must be decarbonised as part of meeting climate targets set by the United Nations and world leaders. Rail networks are vital infrastructure in passenger and freight transport however have not received the same push for decarbonisation as road transport. In this investigation we used real world data from locomotives operating on seven rail corridors to identify optimal battery capacity and hydrogen fuel cell (HFC) power in hybrid systems. We found that the required battery capacity is dependent on both the available regenerative braking energy and on the capacity required to buffer surpluses and deficits from the HFC. The optimal system for each corridor was identified however it was found that one 3.6 MWh battery and 860 kW HFC system could service six of the seven corridors. The optimal systems presented in this work suggest an average of around 5 h of battery storage for the HFC power which is larger than the 2 h previously reported in literature. This may indicate a gap between purely theoretical works that use only route topography and speed and those that employ real world locomotive data.
The Potential of Zero-carbon Bunker Fuels in Developing Countries
Apr 2015
Publication
To meet the climate targets set forth in the International Maritime Organization’s Initial GHG Strategy the maritime transport sector needs to abandon the use of fossil-based bunker fuels and turn toward zero-carbon alternatives which emit zero or at most very low greenhouse gas (GHG) emissions throughout their lifecycles. This report “The Potential of Zero-Carbon Bunker Fuels in Developing Countries” examines a range of zero-carbon bunker fuel options that are considered to be major contributors to shipping’s decarbonized future: biofuels hydrogen and ammonia and synthetic carbon-based fuels. The comparison shows that green ammonia and green hydrogen strike the most advantageous balance of favorable features due to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. Furthermore the report finds that many countries including developing countries are very well positioned to become future suppliers of zero-carbon bunker fuels—namely ammonia and hydrogen. By embracing their potential these countries would be able to tap into an estimated $1+ trillion future fuel market while modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to unlock these potentials.
Optimal Configuration and Scheduling Model of a Multi-Park Integrated Energy System Based on Sustainable Development
Mar 2023
Publication
To maximize the utilization of renewable energy (RE) as much as possible in cold areas while reducing traditional energy use and carbon dioxide emissions a three-layer configuration optimization and scheduling model considering a multi-park integrated energy system (MPIES) a shared energy storage power station (SESPS) and a hydrogen refueling station (HRS) cooperation based on the Wasserstein generative adversarial networks the simultaneous backward reduction technique and the Quantity-Contour (WGAN-SBR_QC) method is proposed. Firstly the WGAN-SBR_QC method is used to generate typical scenarios of RE output. Secondly a three-layer configuration and schedule optimization model is constructed using MPIES SESPS and HRS. Finally the model’s validity is investigated by selecting a multi-park in Eastern Mongolia. The results show that: (1) the typical scenario of RE output improved the overall robustness of the system. (2) The profits of the MPIES and HRS increased by 1.84% and 52.68% respectively and the SESPS profit increased considerably. (3) The proposed approach increased RE utilization to 99.47% while reducing carbon emissions by 32.67%. Thus this model is a reference for complex energy system configuration and scheduling as well as a means of encouraging RE use.
Location Optimization of Hydrogen Refueling Stations in Hydrogen Expressway Based on Hydrogen Supply Chain Cost
Jan 2021
Publication
Hydrogen energy is regarded as an important way to achieve carbon emission reduction. This paper focuses on the combination of the design of the hydrogen supply chain network and the location of hydrogen refueling stations on the expressway. Based on the cost analysis of the hydrogen supply chain a multi-objective model is developed to determine the optimal scale and location of hydrogen refueling stations on the hydrogen expressway. The proposed model considers the hydrogen demand forecast hydrogen source selection hydrogen production and storage and transportation hydrogen station refueling mode etc. Taking Dalian City China as an example with offshore wind power as a reliable green hydrogen supply to select the location and capacity of hydrogen refueling stations for the hydrogen energy demonstration section of a certain expressway under multiple scenarios. The results of the case show that 4 and 5 stations are optimized on the expressway section respectively and the unit hydrogen cost is $14.3 /kg H2 and $11.8 /kg H2 respectively which are equal to the average hydrogen price in the international range. The optimization results verify the feasibility and effectiveness of the model.
Combustion Characteristics of Hydrogen in a Noble Gas Compression Ignition Engine
Jul 2021
Publication
Hydrogen eliminates carbon emissions from compression ignition (CI) engines while noble gases eliminate nitrogen oxide (NOx) emissions by replacing nitrogen. Noble gases can increase the in-cylinder temperature during the compression stroke due to their high specific heat ratio. This paper aims to find the optimum parameters for hydrogen combustion in an argon–oxygen atmosphere and to study hydrogen combustion in all noble gases providing hydrogen combustion data with suitable engine parameters to predict hydrogen ignitability under different conditions. Simulations are performed with Converge CFD software based on the Yanmar NF19SK direct injection CI (DICI) engine parameters. The results are validated with the experimental results of hydrogen combustion in an argon–oxygen atmosphere with a rapid compression expansion machine (RCEM) and modifications of the hydrogen injection timing and initial temperature are proposed. Hydrogen ignition in an argon atmosphere is dependent on a minimum initial temperature of 340 K but the combustion is slightly unstable. Helium and neon are found to be suitable for hydrogen combustion in low compression ratio (CR) engines. However krypton and xenon require temperature modification and a high CR for stable ignition. Detailed parameter recommendations are needed to improve hydrogen ignitability in conventional diesel engines with the least engine modification.
Analysis of the Use of Recycled Aluminum to Generate Green Hydrogen in an Electric Bicycle
Feb 2023
Publication
This article proposes using recycled aluminum generating hydrogen in situ at low pressure to power a 250 W electric bicycle with a fuel cell (FC) to increase the average speed and autonomy compared to a conventional electric bicycle with a battery. To generate hydrogen the aluminum–water reaction with a 6 M NaOH solution is used as a catalyst. This article details the parts of the generation system the electronic configuration used the aluminum- and reagent-loading procedure and the by-products obtained as well as the results of the operation without pedaling with a resistance equivalent to a flat terrain and at maximum power of the accelerator for one and two loads of about 100 g of aluminum each. This allows us to observe different hybrid strategies with a low-capacity battery in each case. The goal is to demonstrate that it is possible to store energy in a long-lasting transportable low-pressure and sustainable manner using recycled-aluminum test tubes and to apply this to mobility
The Potential of Fuel Cells as a Drive Source of Maritime Transport
Nov 2017
Publication
The state of environmental pollution brought about as a result of the modern civilization has been monitored in the interests of the environment and human health since the seventies of the last century. Ensuring the energy security is one of the most basic existential requirements for a functional civilized society. The growing civilizational needs caused by broadly understood development generate demand for the production of all kinds of goods in all sectors of the economy as well as world-wide information transfer. The current energy demand is mostly covered using fossil fuels such as coal oil and natural gas. Some of the energy demand is covered by the energy generated in nuclear reactions and a small part of it comes from renewable energy sources. Energy derived from fossil fuels is inevitably associated with fuel oxidation processes. These processes in addition to generating heat are responsible for the emission of harmful compounds to the atmosphere: carbon monoxide carbon dioxide nitrogen oxides hydrocarbons and particulate matter. These pollutants pose a serious threat to the people as well as the environment in which they live. Due to the large share of fossil fuel energy generation in the process of combustion it becomes necessary to seek other means of obtaining the so-called "clean energy". Fuel cells may have a very high potential in this respect. Their development has enabled attempts to use them in all modes of transport. An important factor in the development of fuel cells is their relatively high efficiency and the coinciding strictening of the emission norms from internal combustion engines used to power maritime transport. Therefore the aim of this article has been to assess the potential of fuel cells as a main source of propulsion power source. A review of the designs of fuel cell systems and their use was performed. The article summarizes the assessment of the potential role of fuel cells as a power source of maritime transport.
Power Scheduling Optimization Method of Wind-Hydrogen Integrated Energy System Based on the Improved AUKF Algorithm test2
Nov 2022
Publication
With the proposal of China’s green energy strategy the research and development technologies of green energy such as wind energy and hydrogen energy are becoming more and more mature. However the phenomenon of wind abandonment and anti-peak shaving characteristics of wind turbines have a great impact on the utilization of wind energy. Therefore this study firstly builds a distributed wind-hydrogen hybrid energy system model then proposes the power dispatching optimization technology of a wind-hydrogen integrated energy system. On this basis a power allocation method based on the AUKF (adaptive unscented Kalman filter) algorithm is proposed. The experiment shows that the power allocation strategy based on the AUKF algorithm can effectively reduce the incidence of battery overcharge and overdischarge. Moreover it can effectively deal with rapid changes in wind speed. The wind hydrogen integrated energy system proposed in this study is one of the important topics of renewable clean energy technology innovation. Its grid-connected power is stable with good controllability and the DC bus is more secure and stable. Compared with previous studies the system developed in this study has effectively reduced the ratio of abandoned air and its performance is significantly better than the system with separate grid connected fans and single hydrogen energy storage. It is hoped that this research can provide some solutions for the research work on power dispatching optimization of energy systems.
Green Hydrogen for Heating and its Impact on the Power System
Jun 2021
Publication
With a relatively high energy density hydrogen is attracting increasing attention in research commercial and political spheres specifically as a fuel for residential heating which is proving to be a difficult sector to decarbonise in some circumstances. Hydrogen production is dependent on the power system so any scale use of hydrogen for residential heating will impact various aspects of the power system including electricity prices and renewable generation curtailment (i.e. wind solar). Using a linearised optimal power flow model and the power infrastructure on the island of Ireland this paper examines least cost optimal investment in electrolysers in the presence of Ireland's 70% renewable electricity target by 2030. The introduction of electrolysers in the power system leads to an increase in emissions from power generation which is inconsistent with some definitions of green hydrogen. Electricity prices are marginally higher with electrolysers whereas the optimal location of electrolysers is driven by a combination of residential heating demand and potential surplus power supplies at electricity nodes.
A Study into Proton Exchange Membrane Fuel Cell Power and Voltage Prediction using Artificial Neural Network
Sep 2022
Publication
Polymer Electrolyte Membrane fuel cell (PEMFC) uses hydrogen as fuel to generate electricity and by-product water at relatively low operating temperatures which is environmentally friendly. Since PEMFC performance characteristics are inherently nonlinear and related predicting the best performance for the different operating conditions is essential to improve the system’s efficiency. Thus modeling using artificial neural networks (ANN) to predict its performance can significantly improve the capabilities of handling multi-variable nonlinear performance of the PEMFC. This paper predicts the electrical performance of a PEMFC stack under various operating conditions. The four input terms for the 5 W PEMFC include anode and cathode pressures and flow rates. The model performances are based on ANN using two different learning algorithms to estimate the stack voltage and power. The models have shown consistently to be comparable to the experimental data. All models with at least five hidden neurons have coefficients of determination of 0.95 or higher. Meanwhile the PEMFC voltage and power models have mean squared errors of less than 1 × 10−3 V and 1 × 10−3 W respectively. Therefore the model results demonstrate the potential use of ANN into the implementation of such models to predict the steady state behavior of the PEMFC system (not limited to polarization curves) for different operating conditions and help in the optimization process for achieving the best performance of the system.
No more items...