Applications & Pathways
Low Temperature Autoignition of Diesel Fuel Under Dual Operation with Hydrogen and Hydrogen-carriers
Mar 2022
Publication
While electrification of light duty vehicles is becoming a real solution to abate local pollutant as well as greenhouse gases emission heavy duty applications (such as long distance freight and maritime transport) will keep requiring fuel-based propulsion systems. In these sectors dominated by compression ignition engines research on alternative biofuels and new combustion modes is still highly necessary. Dual-fuel combustion appears as a very promising concept to replace conventional diesel fuel by sustainable ones. Among the latter hydrogen-derived fuels (the so-called electrofuels or e-fuels) are maybe the most interesting. This work addresses the effect of partial substitution of diesel fuel by hydrogen and hydrogen-carriers (ammonia and methane) on the autoignition process under low temperature conditions. Tests were carried out in a constant volume combustion chamber at different temperatures (535 600 and 650 ◦C) and pressures (11 16 and 21 bar). While the cool flames timing and intensity was only slightly affected by the low reactivity fuel energy content the main ignition was delayed this effect being much more noticeable for ammonia followed by hydrogen and finally methane. Kinetic simulations showed a clear competition for active radicals between both fuels (diesel and low reactivity fuel). The combustion duration also increased with the hydrogen or hydrogen-carrier content which greatly points to the need of modifications in the injection strategy of compression ignition engines operating under dual mode. A correlation was proposed for estimating the autoignition delay time for dual-fuel lean combustion at low temperature.
Hydrogen Emissions from the Hydrogen Value Chain-emissions Profile and Impact to Global Warming
Feb 2022
Publication
Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2 but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2HHV) of H2 supply chains and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.
Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine
Nov 2021
Publication
A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show however that engine-out NH3 -to-NOx ratios were suitable for passive selective catalytic reduction thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.
Fly the Green Deal: Europe's Vision for Sustainable Aviation
Jul 2022
Publication
Europe’s aviation sector continues its resilient and pioneering spirit as it leads the world’s transport system into its new era of great transformation. Surviving the pandemic it is adapting rapidly to satisfy the rising demand for competitive air mobility services while managing a scarcity of resources and embracing the new challenges of climate change and energy transition. Facilitated by ACARE the European Commission its Member States aviation research organisations design and manufacturing industries airlines airports and aviation energy and service providers have all joined together to envision a synchronized transformation path that will ensure that Europe can lead the world towards a climate neutral citizen centric and competitive air mobility system. “Fly the Green Deal” is Europe’s Vision for Sustainable Aviation. It describes the actions and actors necessary towards aviation’s three main strategic goals. It details three time horizons and defines as well the requirement for a proactive and synchronised implementation framework facilitated by the European Commission and EU Member States that includes both the initiating instruments (policies regulations and incentives) and a system of measuring and impact monitoring to ensure the goals are achieved.
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorption system. A comprehensive process model has been developed with the support of Aspen Plus tool to simulate all the plant sections and the overall system. After the process optimization a detailed economic analysis – based on capital and operating costs derived from commercial-scale experience and assuming a 20- year lifetime – has been performed to calculate a levelized cost of methanol (LCoM) of 960 €/t (about 175 €/MWh). The analysis confirms that today the technology is still not competitive from the economic point of view being LCoM more than double than the current methanol price in the international market (450 €/t). However it indicates that the process is expected to become competitive in a mid-term future as a consequence of the new European policies. The study also reveals that LCoM is mainly affected by the electricity price and the electrolyser capital cost as well as the capacity factor of the plant.
Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland
Dec 2022
Publication
The production storage and use of hydrogen for energy purposes will become increasingly important during the energy transition. One way to use hydrogen is to apply it to power vehicles. This green technological solution affects low-emissions transport which is beneficial and important especially in cities. The authors of this article analyzed the use of hydrogen production infrastructure for bus propulsion in the city of Katowice (Poland). The methods used in the study included a greedy algorithm and cost methods which were applied for the selection of vehicles and identification of the infrastructure for the production storage and refueling of hydrogen as well as to conduct the economic analysis during this term. The article presented the complexity of the techno-economic analysis of the infrastructure and its installation. The key element was the selection of the number of vehicles to the hydrogen production possibilities of an electrolyser and capabilities of the storage and charging infrastructure.
Optimising Renewable Generation Configurations of Off-grid Green Ammonia Production System Considering Haber-Bosch Flexibility
Feb 2023
Publication
Green ammonia has received increasing interest for its potential as an energy carrier in the international trade of renewable power. This paper considers the factors that contribute to producing cost-competitive green ammonia from an exporter’s perspective. These factors include renewable resource quality across potential sites operating modes for off-grid plants and seasonal complementarity with trade buyers. The study applies a mixed-integer programming model and uses Australia as a case study because of its excellent solar and wind resources and the potential for synergy between Southern Hemisphere supply and Northern Hemisphere demand. Although renewable resources are unevenly distributed across Australia and present distinct diurnal and seasonal variability modelling shows that most of the pre-identified hydrogen hubs in each state and territory of Australia can produce cost-competitive green ammonia providing the electrolysis and Haber-Bosch processes are partially flexible to cope with the variability of renewables. Flexible operation reduces energy curtailment and leads to lower storage capacity requirements using batteries or hydrogen storage which would otherwise increase system costs. In addition an optimised combination of wind and solar can reduce the magnitude of storage required. Providing that a partially flexible Haber Bosch plant is commercially available the modelling shows a levelised cost of ammonia (LCOA) of AU$756/tonne and AU$659/tonne in 2025 and 2030 respectively. Based on these results green ammonia would be cost-competitive with grey ammonia in 2030 given a feedstock natural gas price higher than AU$14/MBtu. For green ammonia to be cost-competitive with grey ammonia assuming a lower gas price of AU$6/MBtu a carbon price would need to be in place of at least AU$123/tonne. Given that there is a greater demand for energy in winter concurrent with lower solar power production there may be opportunities for solar-based Southern Hemisphere suppliers to supply the major industrial regions most of which are located in the Northern Hemisphere.
Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures
Sep 2018
Publication
Hydrogen has received much attention in the development of direct reduction of iron ores because hydrogen metallurgy is one of the effective methods to reduce CO2 emission in the iron and steel industry. In this study the kinetic mechanism of reduction of hematite particles was studied in a hydrogen atmosphere. The phases and morphological transformation of hematite during the reduction were characterized using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. It was found that porous magnetite was formed and the particles were degraded during the reduction. Finally sintering of the reduced iron and wüstite retarded the reductive progress. The average activation energy was extracted to be 86.1 kJ/mol and 79.1 kJ/mol according to Flynn-Wall-Ozawa (FWO) and Starink methods respectively. The reaction fraction dependent values of activation energy were suggested to be the result of multi-stage reactions during the reduction process. Furthermore the variation of activation energy value was smoothed after heat treatment of hematite particles.
Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach
Nov 2022
Publication
Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions severe pressure rise rates and pre-ignition at mid to high loads. In this study the potential of H2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration the effects of three primary parameters on the engine combustion performance and NOx emissions were evaluated including the compression ratio (CR) the air–fuel ratio and the spark timing. In the simulations the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1 an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ and due to practical limitations of the boosting system λ at 4.0 was set as the limit. At a fixed spark timing using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions the exhaust losses were high. Thus advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NOx level. Finally the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC the results indicated that even though the mixture is lean the flame speed of H2 is sufficiently high to burn the lean charge without using a PC. In addition the PC design used in the current work induced a high MPRR inside the PC and MC leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC leading to lower thermal efficiency compared to the SI mode. Consequently the PC combustion mode needs further optimizations to be employed in hydrogen engine applications.
Permeation Tests in Type-approval Regulations for Hydrogen Fuelled Vehicles: Analysis and Testing Experiences at the JRC-GASTEF Facility
Jan 2023
Publication
This article presents an analysis of the permeation tests established in the current regulations for the type-approval of on board tanks in hydrogen vehicles. The analysis is done from the point of view of a test maker regarding the preparation for the execution of a permeation test. The article contains a description of the required instrumentation and set-up to carry out a permeation test according to the applicable standards and regulations. Tank conditions at the beginning of the test configuration of permeation chamber duration of the test or permeation rate to be reported are aspects that are not well-defined in regulations. In this paper we examine the challenges when carrying out a permeation test and propose possible solutions to overcome them with the intention of supporting test makers and helping the development of permeation test guidelines.
Opportunities for Low-carbon Generation and Storage Technologies to Decarbonise the Future Power System
Feb 2023
Publication
Alternatives to cope with the challenges of high shares of renewable electricity in power systems have been addressed from different approaches such as energy storage and low-carbon technologies. However no model has previously considered integrating these technologies under stability requirements and different climate conditions. In this study we include this approach to analyse the role of new technologies to decarbonise the power system. The Spanish power system is modelled to provide insights for future applications in other regions. After including storage and low-carbon technologies (currently available and under development) batteries and hydrogen fuel cells have low penetration and the derived emission reduction is negligible in all scenarios. Compressed air storage would have a limited role in the short term but its performance improves in the long term. Flexible generation technologies based on hydrogen turbines and long-duration storage would allow the greatest decarbonisation providing stability and covering up to 11–14 % of demand in the short and long term. The hydrogen storage requirement is equivalent to 18 days of average demand (well below the theoretical storage potential in the region). When these solutions are considered decarbonising the electricity system (achieving Paris targets) is possible without a significant increase in system costs (< € 114/MWh).
PEMFC Poly-Generation Systems: Developments, Merits, and Challenges
Oct 2021
Publication
Significant research efforts are directed towards finding new ways to reduce the cost increase efficiency and decrease the environmental impact of power-generation systems. The poly-generation concept is a promising strategy that enables the development of a sustainable power system. Over the past few years the Proton Exchange Membrane Fuel Cell-based Poly-Generation Systems (PEMFC-PGSs) have received accelerated developments due to the low-temperature operation high efficiency and low environmental impact. This paper provides a comprehensive review of the main PEMFC-PGSs including Combined Heat and Power (CHP) co-generation systems Combined Cooling and Power (CCP) co-generation systems Combined Cooling Heat and Power (CCHP) tri-generation systems and Combined Water and Power (CWP) co-generation systems. First the main technologies used in PEMFC-PGSs such as those related to hydrogen production energy storage and Waste Heat Recovery (WHR) etc. are detailed. Then the research progresses on the economic energy and environmental performance of the different PEMFC-PGSs are presented. Also the recent commercialization activities on these systems are highlighted focusing on the leading countries in this field. Furthermore the remaining economic and technical obstacles of these systems along with the future research directions to mitigate them are discussed. The review reveals the potential of the PEMFC-PGS in securing a sustainable future of the power systems. However many economic and technical issues particularly those related to high cost and degradation rate still need to be addressed before unlocking the full benefits of such systems.
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover to perform a refueling procedure that is closer to the driver’s expectations a fast process that requires pre-cooling the gas to −40 ◦C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.
Technical Reliability of Shipboard Technologies for the Application of Alternative Fuels
Jul 2022
Publication
Background: Naval trafc is highly dependent on depleting fossil resources and causes signifcant greenhouse gas emissions. At the same time marine transportation is a major backbone of world trade. Thus alternative fuel concepts are highly needed. Diferent fuels such as ammonia methanol liquefed natural gas and hydrogen have been proposed. For some of them frst prototype vessels have been in operation. However practical experience is still limited. Most studies so far focus on aspects such as efciency and economics. However particularly in marine applications reliability of propulsion systems is of utmost importance because failures on essential ship components at sea pose a huge safety risk. If the respective components lose their functionality repair can be much more challenging due to large distances to dockyards and the complicated transport of spare parts to the ship. Consequently evaluation of reliability should be a core element of system analysis for new marine fuels. Results: In this study reliability was studied for four potential fuels. The analysis involved several steps: estimation of overall failure rates identifcation of most vulnerable components and assessment of criticality by including severity of fault events. On the level of overall failure rate ammonia is shown to be very promising. Extending the view over a pure failure rate-based evaluation shows that other approaches such as LOHC or methanol can be competitive in terms of reliability and risk. As diferent scenarios require diferent weightings of the diferent reliability criteria the conclusion on the best technology can difer. Relevant aspects for this decision can be the availability of technical staf high-sea or coastal operation the presence of non-naval personnel onboard and other factors. Conclusions: The analysis allowed to compare diferent alternative marine fuel concepts regarding reliability. However the analysis is not limited to assessment of overall failure rates but can also help to identify critical elements that deserve attention to avoid fault events. As a last step severity of the individual failure modes was included. For the example of ammonia it is shown that the decomposition unit and the fuel cell should be subject to measures for increasing safety and reducing failure rates.
Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production
Mar 2020
Publication
This paper addresses the energy management of a standalone renewable energy system. The system is configured as a microgrid including photovoltaic generation a lead-acid battery as a short term energy storage system hydrogen production and several loads. In this microgrid an energy management strategy has been incorporated that pursues several objectives. On the one hand it aims to minimize the amount of energy cycled in the battery in order to reduce the associated losses and battery size. On the other hand it seeks to take advantage of the long-term surplus energy producing hydrogen and extracting it from the system to be used in a fuel cell hybrid electric vehicle. A crucial factor in this approach is to accommodate the energy consumption to the energy demand and to achieve this a model predictive control (MPC) scheme is proposed. In this context proper models for solar estimation hydrogen production and battery energy storage will be presented. Moreover the controller is capable of advancing or delaying the deferrable loads from its prescheduled time. As a result a stable and efficient supply with a relatively small battery is obtained. Finally the proposed control scheme has been validated on a real case scenario.
Sustainable Synthetic Carbon Based Fuels for Transport
Sep 2019
Publication
The report considers two types of sustainable synthetic fuels: electro fuels (efuels) and synthetic biofuels. Efuels are made by combining hydrogen (from for example the electrolysis of water) with carbon dioxide (from direct air capture or a point source). Synthetic biofuels can be made from biological material (for example waste from forestry) or from further processing biofuels (for example ethanol).<br/>Whilst synthetic fuels can be “dropped in” to existing engines they are currently more expensive than fossil fuels and in the case of efuels could be thought of as an inefficient use of renewable electricity. However where renewable electricity is cheap and plentiful the manufacture and export of bulk efuels might make economic sense.<br/>Key research challenges identified include improving the fundamental understanding of catalysis; the need to produce cheap low-carbon hydrogen at scale; and developing sources of competitively priced low carbon energy are key to the development of synthetic efuels and biofuels. The UK has the research skills and capacity to improve many of these process steps such as in catalysis and biotechnology and to provide a further area of UK leadership in low-carbon energy.
Aspects of an Experimental Study of Hydrogen Use at Automotive Diesel Engine
Feb 2023
Publication
Hydrogen may represents a good alternative fuel that can be used to fuel internal combustion engines in order to ameliorate energetic and emissions performance. The paper presents some experimental aspects registered at hydrogen use to fuel a diesel engine different substitute ratios being use in the area of 18–34% at 40% engine load and speed of 2000 rev/min. The engine is equipped with an open ECU and the control of the cyclic dosses of diesel fuel and hydrogen are adjusted in order to maintain the engine power performance. The in-cylinder pressure diagrams show the increase of the maximum pressure with 17% from 78.5 bar to 91.8 bar for the maximum substitute ratio. Also values of maximum pressure rise rate start to increase for hydrogen addition in correlation with the increase of fuel amount burned into the premixed stage without exceed the normal values with assure the normal and reliable engine operation. Higher Lower Heating Value and combustion speed of hydrogen assure the increase in thermal efficiency the brake specific energy consumption decreases with 5.4%–7.8% at substitute ratios of 20–27%. The CO2 emission level decreases with 20% for maximum hydrogen cyclic dose. In terms of pollutant emission level at hydrogen use the emission level of the NOx decreases with 50% and the smoke number decreases with 73.8% comparative to classic fuelling at the maximum hydrogen cyclic dose.
Propulsion System Integration for a First-generation Hydrogen Civil Airliner?
May 2021
Publication
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation. Backed by state-of-the-art correlations and engine performance integration analytical tools a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service. The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3300nm a 330-passenger aircraft with a range of 4800nm and a 230- passenger aircraft with a range of 5500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Review of Hydrogen-Gasoline SI Dual Fuel Engines: Engine Performance and Emission
Mar 2023
Publication
Rapid depletion of conventional fossil fuels and increasing environmental concern are demanding an urgent carry out for research to find an alternate fuel which meets the fuel demand with minimum environmental impacts. Hydrogen is considered as one of the important fuel in the near future which meets the above alarming problems. Hydrogen–gasoline dual fuel engines use hydrogen as primary fuel and gasoline as secondary fuel. In this review paper the combustion performance emission and cyclic variation characteristics of a hydrogen–gasoline dual fuel engine have been critically analyzed. According to scientific literature hydrogen–gasoline dual fuel engines have a good thermal efficiency at low and partial loads but the performance deteriorates at high loads. Hydrogen direct injection with gasoline port fuel injection is the optimum configuration for dual fuel engine operating on hydrogen and gasoline. This configuration shows superior result in mitigating the abnormal combustion but experiences high NOx emission. Employing EGR showed a maximum reduction of 77.8% of NOx emission with a EGR flowrate of 18% further increment in flowrate leads to combustion instability. An overview on hydrogen production and carbon footprint related with hydrogen production is also included. This review paper aims to provide comprehensive findings from past works associated with hydrogen–gasoline dual fuel approach in a spark ignition engine
An Effective Optimisation Method for Coupled Wind–Hydrogen Power Generation Systems Considering Scalability
Jan 2023
Publication
A wind–hydrogen coupled power generation system can effectively reduce the power loss caused by wind power curtailment and further improve the ability of the energy system to accommodate renewable energy. However the feasibility and economy of deploying such a power generation system have not been validated through large‐scale practical applications and the economic comparison between regions and recommendations on construction are still lacking. In order to solve the aforementioned problems this paper establishes an economic analysis model for the wind–hydrogen coupled power generation system and proposes a linear optimisation‐based priority analysis method focusing on the major net present value for regional energy system as well as a cost priority analysis method for hydrogen production within sample power plants. The case study proves the effectiveness of the proposed analysis methods and the potential to develop wind–hydrogen coupled power generation systems in various provinces is compared based on the national wind power data in recent years. This provides recommendations for the future pilot construction and promotion of wind–hydrogen coupled power generation systems in China.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain
Sep 2022
Publication
This paper describes the implementation of a hydrogen-based system for an autonomous surface vehicle in an effort to reduce environmental impact and increase driving range. In a suitable computational environment the dynamic electrical model of the entire hybrid powertrain consisting of a proton exchange membrane fuel cell a hydrogen metal hydride storage system a lithium battery two brushless DC motors and two control subsystems is implemented. The developed calculation tool is used to perform the dynamic analysis of the hybrid propulsion system during four different operating journeys investigating the performance achieved to examine the obtained performance determine the feasibility of the work runs and highlight the critical points. During the trips the engine shows fluctuating performance trends while the energy consumption reaches 1087 Wh for the fuel cell (corresponding to 71 g of hydrogen) and 370 Wh for the battery consuming almost all the energy stored on board.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
Import Options for Chemical Energy Carriers from Renewable Sources to Germany
Feb 2024
Publication
Import and export of fossil energy carriers are cornerstones of energy systems world-wide. If energy systems are to become climate neutral and sustainable fossil carriers need to be substituted with carbon neutral alternatives or electrified if possible. We investigate synthetic chemical energy carriers hydrogen methane methanol ammonia and Fischer-Tropsch fuels produced using electricity from Renewable Energy Source (RES) as fossil substitutes. RES potentials are obtained from GIS-analysis and hourly resolved time-series are derived using reanalysis weather data. We model the sourcing of feedstock chemicals synthesis and transport along nine different Energy Supply Chains to Germany and compare import options for seven locations around the world against each other and with domestically sourced alternatives on the basis of their respective cost per unit of hydrogen and energy delivered. We find that for each type of chemical energy carrier there is an import option with lower costs compared to domestic production in Germany. No single exporting country or energy carrier has a unique cost advantage since for each energy carrier and country there are cost-competitive alternatives. This allows exporter and infrastructure decisions to be made based on other criteria than energy and cost. The lowest cost means for importing of energy and hydrogen are by hydrogen pipeline from Denmark Spain and Western Asia and Northern Africa starting at 36 EUR/MWhLHV to 42 EUR/MWhLHV or 1.0 EUR/kgH2 to 1.3 EUR/kgH2 (in 2050 assuming 5% p.a. capital cost). For complex energy carriers derived from hydrogen like methane ammonia methanol or Fischer-Tropsch fuels imports from Argentina by ship to Germany are lower cost than closer exporters in the European Union or Western Asia and Northern Africa. For meeting hydrogen demand direct hydrogen imports are more attractive than indirect routes using methane methanol or ammonia imports and subsequent decomposition to hydrogen because of high capital investment costs and energetic losses of the indirect routes. We make our model and data available under open licenses for adaptation and reuse.
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
Jul 2022
Publication
Superior fuel economy higher torque and durability have led to the diesel engine being widely used in a variety of fields of application such as road transport agricultural vehicles earth moving machines and marine propulsion as well as fixed installations for electrical power generation. However diesel engines are plagued by high emissions of nitrogen oxides (NOx) particulate matter (PM) and carbon dioxide when conventional fuel is used. One possible solution is to use low-carbon gaseous fuel alongside diesel fuel by operating in a dual-fuel (DF) configuration as this system provides a low implementation cost alternative for the improvement of combustion efficiency in the conventional diesel engine. An initial step in this direction involved the replacement of diesel fuel with natural gas. However the consequent high levels of unburned hydrocarbons produced due to non-optimized engines led to a shift to carbon-free fuels such as hydrogen. Hydrogen can be injected into the intake manifold where it premixes with air then the addition of a small amount of diesel fuel auto-igniting easily provides multiple ignition sources for the gas. To evaluate the efficiency and pollutant emissions in dual-fuel diesel-hydrogen combustion a numerical CFD analysis was conducted and validated with the aid of experimental measurements on a research engine acquired at the test bench. The process of ignition of diesel fuel and flame propagation through a premixed air-hydrogen charge was represented the Autoignition-Induced Flame Propagation model included ANSYS-Forte software. Because of the inefficient operating conditions associated with the combustion the methodology was significantly improved by evaluating the laminar flame speed as a function of pressure temperature and equivalence ratio using Chemkin-Pro software. A numerical comparison was carried out among full hydrogen full methane and different hydrogen-methane mixtures with the same energy input in each case. The use of full hydrogen was characterized by enhanced combustion higher thermal efficiency and lower carbon emissions. However the higher temperatures that occurred for hydrogen combustion led to higher NOx emissions.
A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty
Mar 2024
Publication
: In the last decade with the increased concerns about the global environment attempts have been made to promote the replacement of fossil fuels with sustainable sources. For transport which accounts for around a quarter of total greenhouse gas emissions meeting climate neutrality goals will require replacing existing fleets with electric or hydrogen-propelled vehicles. However the lack of adequate decision support approach makes the introduction of new propulsion technologies in the transportation sector a complex strategic decision problem where distorted non-optimal decisions may easily result in long-term negative effects on the performance of logistic operators. This research addresses the problem of transport fleet renewal by proposing a multi-criteria decision-making approach and takes into account the multiple propulsion technologies currently available and the objectives of the EU Green Deal as well as the inherent scenario uncertainty. The proposed approach based on the TOPSIS model involves a novel decision framework referred to as a generalized life cycle evaluation of the environmental and cost objectives which is necessary when comparing green and traditional propulsion systems in a long-term perspective to avoid distorted decisions. Since the objective of the study is to provide a practical methodology to support strategic decisions the framework proposed has been validated against a practical case referred to the strategic fleet renewal decision process. The results obtained demonstrate how the decision maker’s perception of the technological evolution of the propulsion technologies influences the decision process thus leading to different optimal choices.
Life Cycle Cost Analysis for Scotland Short-Sea Ferries
Feb 2023
Publication
The pathway to zero carbon emissions passing through carbon emissions reduction is mandatory in the shipping industry. Regarding the various methodologies and technologies reviewed for this purpose Life Cycle Cost Analysis (LCCA) has been used as an excellent tool to determine economic feasibility and sustainability and to present directions. However insufficient commercial applications cause a conflict of opinion on which fuel is the key to decarbonisation. Many LCCA comparison studies about eco-friendly ship propulsion claim different results. In order to overcome this and discover the key factors that affect the overall comparative analysis and results in the maritime field it is necessary to conduct the comparative analysis considering more diverse case ships case routes and various types that combine each system. This study aims to analyse which greener fuels are most economically beneficial for the shipping sector and prove the factors influencing different results in LCCA. This study was conducted on hydrogen ammonia and electric energy which are carbon-free fuels among various alternative fuels that are currently in the limelight. As the power source a PEMFC and battery were used as the main power source and a solar PV system was installed as an auxiliary power source to compare economic feasibility. Several cost data for LCCA were selected from various feasible case studies. As the difficulty caused by the storage and transportation of hydrogen and ammonia should not be underestimated in this study the LCCA considers not only the CapEx and OpEx but also fuel transport costs. As a result fuel cell propulsion systems with hydrogen as fuel proved financial effectiveness for short-distance ferries as they are more inexpensive than ammonia-fuelled PEMFCs and batteries. The fuel cost takes around half of the total life-cycle cost during the life span.
Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response
Mar 2023
Publication
In recent years the stability of the distribution network has declined due to the large proportion of the uses of distributed generation (DG) with the continuous development of renewable energy power generation technology. Meanwhile the traditional distribution network operation mode cannot keep the balance of the source and load. The operation mode of the active distribution network (ADN) can effectively reduce the decline in operation stability caused by the high proportion of DG. Therefore this work proposes a bi-layer model for the planning of the electricity–hydrogen hybrid energy storage system (ESS) considering demand response (DR) for ADN. The upper layer takes the minimum load fluctuation maximum user purchase cost satisfaction and user comfort as the goals. Based on the electricity price elasticity matrix model the optimal electricity price formulation strategy is obtained for the lower ESS planning. In the lower layer the optimal ESS planning scheme is obtained with the minimum life cycle cost (LCC) of ESS the voltage fluctuation of ADN and the load fluctuation as the objectives. Finally the MOPSO algorithm is used to test the model and the correctness of the proposed method is verified by the extended IEEE-33 node test system. The simulation results show that the fluctuation in the voltage and load is reduced by 62.13% and 37.06% respectively.
Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X
Mar 2023
Publication
Power-to-X is one of the most attention-grabbing topics in the energy sector. Researchers are exploring the potential of harnessing power from renewable technologies and converting it into fuels used in various industries and the transportation sector. With the current market and research emphasis on Power-to-X and the accompanying substantial investments a review of Power-to-X is becoming essential. Optimization will be a crucial aspect of managing an energy portfolio that includes Power-to-X and electrolysis systems as the electrolyzer can participate in multiple markets. Based on the current literature and published reviews none of them adequately showcase the state-of-the-art optimization algorithms for energy portfolios focusing on Power-to-X. Therefore this paper provides an in-depth review of the optimization algorithms applied to energy portfolios with a specific emphasis on Power-to-X aiming to uncover the current state-of-the-art in the field.
Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand
Nov 2019
Publication
Hydrogen-based energy storage and generation is an increasingly used technology especially in renewable systems because they are non-polluting devices. Fuel cells are complex nonlinear systems so a good model is required to establish efficient control strategies. This paper presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model combining clusters’ techniques to get multiple Artificial Neural Networks models whose results are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model proposed in this article use the power generated by the fuel cell the hydrogen inlet flow and the desired power variation to predict the necessary variation of the hydrogen flow that allows the stack to reach the desired working point. The proposed algorithm has been tested on a real proton exchange membrane fuel cell and the results show a great precision of the model so that it can be very useful to improve the efficiency of the fuel cell system.
A Review on Experimental Studies Investigating the Effect of Hydrogen Supplementation in CI Diesel Engines—The Case of HYMAR
Aug 2022
Publication
Hydrogen supplementation in diesel Compression Ignition (CI) engines is gaining more attention since it is considered as a feasible solution to tackle the challenges that are related to the emission regulations that will be applied in the forthcoming years. Such a solution is very attractive because it requires only limited modifications to the existing technology of internal combustion CI engines. To this end numerous work on the investigation of an engine’s performance and the effects of emissions when hydrogen is supplied in the engine’s cylinders has been completed by researchers. However contradictory results were found among these studies regarding the efficiency of the engine and the emission characteristics achieved compared to the diesel-only operation. The different conclusions might be attributed to the different characteristics and technology level of the engines that were utilized as well as on the chosen operational parameters. This paper aims to present an overview of the experimental studies that have examined the effects of hydrogen addition in CI four-stroke diesel engines reporting the characteristics of the utilized engines the quantities of hydrogen tested the method of hydrogen induction used as well as the operational conditions tested in order to help interested researchers to easily identify relevant and appropriate studies to perform comparisons or validations by repeating certain cases. The presented data do not include any results or conclusions from these studies. Furthermore an experimental configuration along with the appropriate modifications on a heavy-duty auxiliary generator-set engine that was recently developed by the authors for the purposes of the HYMAR project is presented.
Low-carbon Economic Dispatch of Power Systems Based on Mobile Hydrogen Storage
Mar 2022
Publication
To alleviate the global warming crisis carbon reduction is an inevitable trend of sustainable development. The energy carrier with Hydrogen (H2) is considered to be one of the promising choices for realizing a low-carbon economy. With the increasing penetration level of wind power generation and for well-balancing wind generation fluctuations this paper proposes a low-carbon economic dispatch method for power systems based on mobile hydrogen storage(MHS). The wind power surplus during off-peak load periods is first utilized to generate green H2. Afterward the green H2 is optimally transported to multiple hydrogen storage(HS) stations for generating power electricity by flexibly controlling the electrolysis(EL) methanation(ME) carbon capture(CCS) and H2 power generation processes in such a way the wind power is coordinated with the hydrogen production transport and utilization to reduce the total carbon emission and minimize the operation cost of power systems. Finally the proposed power system low-carbon economic dispatch model is verified by case studies.
Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects
Feb 2023
Publication
The interest in hybrid polymer electrolyte membrane fuel cells (PEMFC) fuelled by hydrogen in shipping has seen an unprecedented growth in the last years as it could allow zero-emission navigation. However technical safety and regulatory barriers in PEMFC ship design and operation are hampering the use of such systems on a large scale. While several studies analyse these aspects a comprehensive and up-to-date overview on hydrogen PEMFCs for shipping is missing. Starting from the survey of past/ongoing projects on FCs in shipping this paper presents an extensive review on maritime hydrogen PEMFCs outlining the state of the art and future trends for hydrogen storage and bunkering powertrain and regulations. In addition to the need for a clear regulatory framework future studies should investigate the development of an efficient fuel supply chain and bunkering facilities ashore. As for the onboard power system health-conscious energy management low-temperature heat recovery and advancements in fuel processing have emerged as hot research topics.
Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Feb 2022
Publication
The Energy Management Strategy (EMS) in Fuel Cell Hybrid Electric Vehicles (FCHEVs) is the key part to enhance optimal power distribution. Indeed the most recent works are focusing on optimizing hydrogen consumption without taking into consideration the degradation of embedded energy sources. In order to overcome this lack of knowledge this paper describes a new health-conscious EMS algorithm based on Model Predictive Control (MPC) which aims to minimize the battery degradation to extend its lifetime. In this proposed algorithm the health-conscious EMS is normalized in order to address its multi-objective optimization. Then weighting factors are assigned in the objective function to minimize the selected criteria. Compared to most EMSs based on optimization techniques this proposed approach does not require any information about the speed profile which allows it to be used for real-time control of FCHEV. The achieved simulation results show that the proposed approach reduces the economic cost up to 50% for some speed profile keeping the battery pack in a safe range and significantly reducing energy sources degradation. The proposed health-conscious EMS has been validated experimentally and its online operation ability clearly highlighted on a PEMFC delivery postal vehicle.
Electric Aircraft Fueled by Liquid Hydrogen and Liquefied Natural Gas
Jul 2021
Publication
The paper is a review of the opportunities and challenges of cryogenic power devices of electric aircraft and the ongoing research and development efforts of the government agencies and the industry. Liquid Hydrogen (LH2) and Liquefied Natural Gas (LNG) are compared to support high temperature superconducting (HTS) and normal metal devices respectively. The power devices were assumed to operate at the normal boiling point of the fuel used. The efficiencies of the electrical devices are estimated based on state-of-the-art technology. The mass flow rates and total fuel requirements for both the cryogenic fuels required to maintain the operating temperatures of the devices were simulated using thermal network models. A twin-aisle 300 passenger aircraft with a 5.5 h flight duration was used for the models. The results show that the required masses of LH2 and LNG are 744 kg and 13638 kg respectively for the cooling requirement. The corresponding volumes of LH2 and LNG required are 9760 and 30300 L respectively. In both cases the estimated mass of the fuel needed for the aircraft is more than what is needed to maintain the cryogenic environment of the power devices. It was concluded that an electric aircraft with LNG cooled normal metal devices is feasible. However an aircraft with HTS devices and cooled with LH2 is more attractive if the ongoing R&D efforts on HTS devices and LH2 infrastructure are successful. The emission reductions would be substantially higher with LH2 particularly when H2 is produced using renewable energy sources.
Cost and Thermodynamic Analysis of Wind-Hydrogen Production via Multi-energy Systems
Mar 2024
Publication
With rising temperatures extreme weather events and environmental challenges there is a strong push towards decarbonization and an emphasis on renewable energy with wind energy emerging as a key player. The concept of multi-energy systems offers an innovative approach to decarbonization with the potential to produce hydrogen as one of the output streams creating another avenue for clean energy production. Hydrogen has significant potential for decarbonizing multiple sectors across buildings transport and industries. This paper explores the integration of wind energy and hydrogen production particularly in areas where clean energy solutions are crucial such as impoverished villages in Africa. It models three systems: distinct configurations of micro-multi-energy systems that generate electricity space cooling hot water and hydrogen using the thermodynamics and cost approach. System 1 combines a wind turbine a hydrogen-producing electrolyzer and a heat pump for cooling and hot water. System 2 integrates this with a biomass-fired reheat-regenerative power cycle to balance out the intermittency of wind power. System 3 incorporates hydrogen production a solid oxide fuel cell for continuous electricity production an absorption cooling system for refrigeration and a heat exchanger for hot water production. These systems are modeled with Engineering Equation Solver and analyzed based on energy and exergy efficiencies and on economic metrics like levelized cost of electricity (LCOE) cooling (LCOC) refrigeration (LCOR) and hydrogen (LCOH) under steady-state conditions. A sensitivity analysis of various parameters is presented to assess the change in performance. Systems were optimized using a multiobjective method with maximizing exergy efficiency and minimizing total product unit cost used as objective functions. The results show that System 1 achieves 79.78 % energy efficiency and 53.94 % exergy efficiency. System 2 achieves efficiencies of 55.26 % and 27.05 % respectively while System 3 attains 78.73 % and 58.51 % respectively. The levelized costs for micro-multi-energy System 1 are LCOE = 0.04993 $/kWh LCOC = 0.004722 $/kWh and LCOH = 0.03328 $/kWh. For System 2 these values are 0.03653 $/kWh 0.003743 $/kWh and 0.03328 $/kWh. In the case of System 3 they are 0.03736 $/kWh 0.004726 $/kWh and 0.03335 $/kWh and LCOR = 0.03309 $/kWh. The results show that the systems modeled here have competitive performance with existing multi-energy systems powered by other renewables. Integrating these systems will further the sustainable and net zero energy system transition especially in rural communities.
Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications
Nov 2022
Publication
Transportation is one of the largest sources of CO2 emissions accounting for more than 20% of worldwide emissions. However it is one of the areas where decarbonization presents the greatest hurdles owing to its capillarity and the benefits that are associated with the use of fossil fuels in terms of energy density storage and transportation. In order to accomplish comprehensive decarbonization in the transport sector it will be required to encourage a genuine transition to low-carbon fuels and the widespread deployment of the necessary infrastructures to allow for a large-scale innovation. Renewable hydrogen shows potential for sustainable transportation applications whether in fuel cell electric vehicles (FCEVs) such as automobiles trucks and trains or as a raw material for ship and airplane synthetic fuels. The present paper aims to present how hydrogen-fuel cell hybrid powertrains for road vehicles work in terms of conceptual layouts and operating strategies. A comprehensive overview of real and current applications is presented concerning existing prototypes and commercially available vehicles with a focus on the main key performance indicators such as efficiency mileage and energy consumption.
A Hydrogen-fuelled Compressed Air Energy Storage System for Flexibility Reinforcement and Variable Renewable Energy Integration in Grids with High Generation Curtailment
Mar 2024
Publication
Globally the increasing share of renewables prominently driven by intermittent sources such as solar and wind power poses significant challenges to the reliability of current electrical infrastructures leading to the adoption of extreme measures such as generation curtailment to preserve grid security. Within this framework it is essential to develop energy storage systems that contribute to reinforce the flexibility and security of power grids while simultaneously reducing the share of generation curtailment. Therefore this study investigates the performance of an integrated photovoltaic-hydrogen fuelled-compressed air energy storage system whose configuration is specifically conceived to enable the connection of additional intermittent sources in already saturated grids. The yearly and seasonal performance of the integrated energy storage system specifically designed to supply flexibility services are evaluated for a scenario represented by a real grid with high-variable renewables penetration and frequent dispatchability issues. Results show that the integrated system with performanceoptimized components and a new energy management strategy minimizes photovoltaic energy curtailment otherwise around 50% to as low as 4% per year achieving system efficiencies of up to 62% and reinforces the grid by supplying inertial power for up to 20% of nighttime hours. In conclusion the integrated plant operating with zero emissions on-site hydrogen production and optimized for non-dispatchable photovoltaic energy utilization proves to be effective in integrating new variable renewable sources and reinforcing saturated grids particularly during spring and summer.
Potential Role of Renewable Gas in the Transition of Electricity and District Heating Systems
Dec 2019
Publication
With the constant increase in variable renewable energy production in electricity and district heating systems integration with the gas system is a way to provide flexibility to the overall energy system. In the sustainable transition towards a zero-emission energy system traditional natural gas can be substituted by renewable gasses derived from anaerobic digestion or thermal gasification and hydrogen. In this paper we present a methodology for modelling renewable gas options and limits on biomass resources across sectors in the energy optimisation model Balmorel. Different scenarios for socio-economic pathways to emission neutral electricity and district heating systems in Denmark Sweden Norway and Germany show that a renewable based energy system benefits from a certain percentage of gas as a supplement to other flexibility options like interconnectors. Especially upgraded biogas from anaerobic digestion serves as a substitute for natural gas in all scenarios. Allocating only 10% of available biomass to the electricity and district heating sector leads to full exploitation of the scarce biomass resource by boosting biogas and syngas with hydrogen. The need for renewable gasses is highest in Germany and least in Norway where hydro-power provides flexibility in terms of storable and dispatchable electricity production. The scenarios show that a required ‘‘late sprint" from fossils to achieve a zero-emission energy system in 2050 causes (1) significant higher accumulated emissions and (2) a system which strongly relies on fuels also in an emission free system instead of stronger integration of the electricity and district heating systems through electrification as well as stronger integration of the power systems across countries through interconnectors.
Modeling and Simulation of an Isolated Hybrid Micro-grid with Hydrogen Production and Storage
Jan 2014
Publication
This work relates the study of system performance in operational conditions for an isolated micro-grid powered by a photovoltaic system and a wind turbine. The electricity produced and not used by the user will be accumulated in two different storage systems: a battery bank and a hydrogen storage system composed of two PEM electrolyzers four pressurized tanks and a PEM fuel cell. One of the main problems to be solved in the development of isolated micro-grids is the management of the various devices and energy flows to optimize their functioning in particular in relation to the load profile and power produced by renewable energy systems depending on weather conditions. For this reason through the development and implementation of a specific simulation program three different energy management systems were studied to evaluate the best strategy for effectively satisfying user requirements and optimizing overall system efficiency.
Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)
Dec 2022
Publication
In recent years there has been great interest in Wankel-type rotary engines which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines which are already very advantageous for UAV applications even more advantageous by applying the hydrogen enrichment technique. In this study hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases respectively compared to those obtained with neat gasoline. In contrast CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions respectively. NOx emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.
Net Hydrogen Consumption Minimization of Fuel Cell Hybrid Trains Using a Time-Based Co-Optimization Model
Apr 2022
Publication
With increasing concerns on transportation decarbonization fuel cell hybrid trains (FCHTs) attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone cannot recover the regenerative braking energy (RBE) energy storage devices (ESDs) are commonly deployed for the recovery of RBE and provide extra traction power to improve the energy efficiency. This paper aims to minimize the net hydrogen consumption (NHC) by co-optimizing both train speed trajectory and onboard energy management using a time-based mixed integer linear programming (MILP) model. In the case with the constraints of speed limits and gradients the NHC of co-optimization reduces by 6.4% compared to the result obtained by the sequential optimization which optimizes train control strategies first and then the energy management. Additionally the relationship between NHC and employed ESD capacity is studied and it is found that with the increase of ESD capacity the NHC can be reduced by up to 30% in a typical route in urban railway transit. The study shows that ESDs play an important role for FCHTs in reducing NHC and the proposed time-based co-optimization model can maximize the energy-saving benefits for such emerging traction systems with hybrid energy sources including both fuel cells and ESD.
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea
Aug 2020
Publication
In this study the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO) natural gas and hydrogen with various energy sources for a 12000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK i.e. MGO from Saudi Arabia and natural gas from Qatar these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal nuclear energy renewable energy and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-toTank Tank-to-Wake and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP) acidification potential (AP) photochemical potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
Life Cycle Cost Analysis of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Feb 2024
Publication
The use of autonomous vehicles for marine and submarine work has risen considerably in the last decade. Developing new monitoring systems navigation and communications technologies allows a wide range of operational possibilities. Autonomous Underwater Vehicles (AUVs) are being used in offshore missions and applications with some innovative purposes by using sustainable and green energy sources. This paper considers an AUV that uses a hydrogen fuel cell achieving zero emissions. This paper analyses the life cycle cost of the UAV and compares it with a UAV powered by conventional energy. The EN 60300-3-3 guidelines have been employed to develop the cost models. The output results show estimations for the net present value under different scenarios and financial strategies. The study has been completed with the discount rate sensibility analysis in terms of financial viability.
A Power Dispatch Allocation Strategy to Produce Green Hydrogen in a Grid-integrated Offshore Hybrid Energy System
Mar 2024
Publication
A dedicated grid-tied offshore hybrid energy system for hydrogen production is a promising solution to unlock the full benefit of offshore wind and solar energy and realize decarbonization and sustainable energy security targets in electricity and other sectors. Current knowledge of these offshore hybrid systems is limited particularly in the integration component control and allocation aspects. Therefore a grid-integrated analytical model with a power dispatch allocation strategy between the grid and electrolyzer for the co-production of hydrogen from the offshore hybrid energy system is developed in this paper. While producing hydrogen the proposed offshore hybrid energy system supplies a percentage of its capacity to the onshore grid facility and the amount of the electricity is quantified based on the electricity market price and available total offshore generation. The detailed controls of each component are discussed. A case study considers a hypothetical hybrid offshore energy system of 10 MW situated in a potential offshore off the NSW of Australia based on realistic metrological data. A grid-scale proton-exchange membrane electrolyzer stack is used and a model predictive power controller is implemented on the distributed hydrogen generation scheme. The model is helpful for the assessment or optimization of both the economics and feasibility of the dedicated offshore hybrid energy farm for hydrogen production systems.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Next for Net Zero Podcast: Transporting to a Greener World
Oct 2022
Publication
Decarbonisation will need a significant societal shift. The when why and how we travel is going to look very different within a decade. Joining us is Florentine Roy – a leading expert on electric vehicles and Innovation Project Lead at UK Power Networks and Matt Hindle - Head of Net Zero and Sustainability at Wales and West Utilities. Let’s talk about the energy system implications of this massive undertaking and how it can be enabled by innovation in a fair and just way.
The podcast can be found here.
The podcast can be found here.
No more items...