Ukraine
Assessment of Operational Degradation of Pipeline Steels
Jun 2021
Publication
This paper summarizes a series of the authors’ research in the field of assessing the operational degradation of oil and gas transit pipeline steels. Both mechanical and electrochemical properties of steels are deteriorated after operation as is their resistance to environmentally-assisted cracking. The characteristics of resistance to brittle fracture and stress corrosion cracking decrease most intensively which is associated with a development of in-bulk dissipated microdamages of the material. The most sensitive indicators of changes in the material’s state caused by degradation are impact toughness and fracture toughness by the J-integral method. The degradation degree of pipeline steels can also be evaluated nondestructively based on in-service changes in their polarization resistance and potential of the fracture surface. Attention is drawn to hydrogenation of a pipe wall from inside as a result of the electrochemical interaction of pipe metal with condensed moisture which facilitates operational degradation of steel due to the combined action of operating stresses and hydrogen. The development of microdamages along steel texture was evidenced metallographically as a trend to the selective etching of boundaries between adjacent bands of ferrite and pearlite and fractographically by revealing brittle fracture elements on the fracture surfaces namely delamination and cleavage indicating the sites of cohesion weakening between ferrite and pearlite bands. The state of the X52 steel in its initial state and after use for 30 years was assessed based on the numerical simulation method.
Peculiarities of Bond Strength Degradation in Reinforced Concrete Induced by Accelerated Electrochemical Methods
Dec 2018
Publication
Reinforced concrete (RC) structures are long-term operated objects with service life of 50–100 years. During their operation they subject to continuous ambient effects (cyclic temperature changes acid rains de-icing salts) and service loads (e.g. traffic) which effect on structural integrity of the composite and lead to worsening of structures serviceability. One of the reasons for strength loss of RC members is bond degradation between rebar and concrete. It could be caused by two different factors: overprotection of RC and reinforcement corrosion. These effects were simulated in the laboratory conditions by the electrochemical methods applying of impressed cathodic current and accelerated corrosion tests respectively. It was shown that applied anode polarization causes not only concrete cracking due to internal pressure of corrosion products at the interface but also due to their expansion far from rebar for a distance comparative with a specimen thickness evidently into preliminary formed cracks. Since intensive corrosion of steel reinforcement decreases its diameter and corrosion products can migrate from the rebar surface into a depth of concrete these factors could weaken bond in RC installations up to a total loss of cohesion between rebar and concrete. The influence of cathodic polarization of steel embedded in concrete is commonly seemed to consist in its possible hydrogen embrittlement and ions redistribution in concrete matrix. In this paper the effect of hydrogen recombined at the rebar–concrete interface on bond weakening and concrete cracking is considered.
Feature of Stress Corrosion Cracking of Degraded Gas Pipeline Steels
Aug 2019
Publication
Stress corrosion cracking (SCC) of steels can reduce the structural integrity of gas pipelines. To simulate in-service degradation of pipeline steels in laboratory the method of accelerated degradation consisted in subjecting specimens to electrolytic hydrogenation to loading up the certain plastic deformation and heating of specimen at 250°C was recently developed. The purpose of this paper was to analyse mechanical and SCC behaviour of in-service and in-laboratory degraded gas pipeline steels and to reveal some fractographic features of SCC. Three pipeline steels of the different strength (17H1S which is equivalent of API X52 API X60 and API X70) were investigated. The characteristics of the as-received pipeline steels with different strength were compared with the properties of pipeline steels after in-service and in-laboratory degradation. An influence of the NS4 solution on SCC resistance of 17H1S and API X60 steels in the as-received state and after the accelerated degradation using slow strain rate tension method was analysed. The noticeable decrease of plasticity for 17H1S and API X60 steels after long-term operation was shown. Deep microdelaminations revealed in the central part of fracture surfaces for the operated steels can be considered as the signs of dissipated damaging in the metal caused by texture and hydrogen absorbed by metal. Comparison of the SCC tests results showed that the characteristics of both steels in the as-received state were insignificantly changed under the influence of the environment. At the same time the degraded steels were characterized by a high sensitivity to SCC. It was shown fractographically that it associated with cracking along interfaces of ferrite and pearlite grains with secondary deep intergranular cracks formation and also by delamination between ferrite and cementite inside pearlite grains. The similar fracture mechanism at SCC tests was revealed for near the outer surface of the specimens and in the central part of the fracture surfaces of in-laboratory degraded specimens. These results demonstrated the key role of hydrogen during SCC and in-bulk cracking as well.
Electrochemical Fracture Analysis of In-service Natural Gas Pipeline Steels
Dec 2018
Publication
Long-term operation of natural gas transit pipelines implies aging hydrogen-induced and stress corrosion cracking and it causes hydrogen embrittlement of steels degradation of mechanical properties associated to a safe serviceability of pipelines and failure risk increase. The implementation of effective diagnostic measures of pipelines steels degradation would allow planning actions in order to reduce a risk of fracture. In this paper a new scientific and methodical approach based on the electrochemical analysis of fracture surface for evaluation of in-service degradation of operated pipeline steels was developed. It was suggested that carbon diffusion to grain boundaries and to defects inside grains intensified by hydrogen under long-term operation led to formation of nanoparticles of carbides which resulted in intergranular cracking of operated pipeline steels under service and their transgranular cracking under impact toughness testing. Therefore fracture surface was enriched by carbon compounds and electrochemical characteristics were sensitive to this. In-service degradation of ferrite-pearlite pipeline steels was accompanied by a sharp shift in open-circuit potential of the fracture surface (brittle fracture) of specimens after impact toughness tests compared with that of polished steel surfaces. A significant difference between potentials of the fracture surface and the polished steel surface (over 60 mV in 0.3% NaCl solution) of specimens made of ferrite-pearlite pipeline steels observed after their long-term operation was evidently due to the increased content of carbon compounds on the fracture surface. Mechanism of ferrite-pearlite pipeline steels embrittlement under operation consisted in carbides enrichment not only grain boundaries but also intragranular defects has been revealed as it is indicated by an increase of carbon content on transgranular fracture surfaces determined electrochemically.
Fatigue Crack Growth in Operated Gas Pipeline Steels
Jun 2020
Publication
Regularities of fatigue crack growth for pipeline steels of different strength are presented and the changes in fatigue behavior of these steels after long term operation are analyzed. Threshold values of stress intensity factor range are lower for operated steels comparing to the corresponding values for as received ones. During the testing in the simulated soil solution NS4 a barely noticeable tendency to increase the threshold values of SIF was traced. It was explained by the appearance of intergranular fracture elements on the backgrownd of the typical flat fatigue relief already in the near-threshold region of fatigue crack growth curves in the soil solution. A higher relief of intergranular facets provided favorable conditions for occurrence of crack closure effect.<br/>Fatigue testing was performed using steel specimens after in-laboratory and in-service degradation and it was shown that results for both degraded steels are very close to each other proving the validity of the method of in-laboratory degradation. A new methodic approach to fatigue testing of pipe steels is presented which allows simulating working conditions of gas pipelines namely the hydrogen diffusion through the pipe wall to its external surface and estimating its possible effect on SCC. It consists in evaluation of the influence of hydrogen reached the crack tip only due to its diffusion on the crack growth. It is found that hydrogen absorbed by metal during the test providing such conditions causes a leap of crack growth rate in the Paris region of the fatigue crack growth curve of the tested 17H1S steel. Intergranular mechanism of fracture detected on the specimen fracture surface is suggested as a clear evidence of embrittlement of grain boundaries as a result of its hydrogenation.
Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure
Dec 2021
Publication
In the research the corrosion and mechanical properties as well as susceptibility to hydrogen embrittlement of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite–pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO2-containing acid chloride solution simulating formation water was significantly lower than that of the MCS which was associated with microstructure features. The higher strength MCS with the dispersed microstructure was less susceptible to hydrogen embrittlement under preliminary electrolytic hydrogenation than the lower strength MHCS with the coarse-grained microstructure. To estimate the embrittlement of steels the method of the FEM load simulation of the specimens with cracks was used. The constitutive relations of the true stress–strain of the tested steels were defined. The stress and strain dependences in the crack tip were calculated. It was found that the MHCS was characterized by the lower plasticity on the stage of the neck formation of the specimen and the lower fracture toughness than the other one. The obtained results demonstrating the limitations of the usage of casing pipes made of the MHCS with the coarse-grained ferrite/pearlite microstructure in corrosive and hydrogenating environments were discussed.
Micro and Macro Mechanical Analysis of Gas Pipeline Steels
Sep 2017
Publication
The actual safety margins of gas pipelines depend on a number of factors that include the mechanical characteristics of the material. The evolution with time of the metal properties can be evaluated by mechanical tests performed at different scales seeking for the best compromise between the simplicity of the experimental setup to be potentially employed in situ and the reliability of the results. Possible alternatives are comparatively assessed on pipeline steels of different compositions and in different states.
Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology
Jul 2021
Publication
This work investigates life cycle costing analysis as a tool to estimate the cost of hydrogen to be used as fuel for Hydrogen Fuel Cell vehicles (HFCVs). The method of life cycle costing and economic data are considered to estimate the cost of hydrogen for centralised and decentralised production processes. In the current study two major hydrogen production methods are considered methane reforming and water electrolysis. The costing frameworks are defined for hydrogen production transportation and final application. The results show that hydrogen production via centralised methane reforming is financially viable for future transport applications. The ownership cost of HFCVs shows the highest cost among other costs of life cycle analysis.
Increasing Technical Efficiency of Renewable Energy Sources in Power Systems
Mar 2023
Publication
This paper presents a method for refining the forecast schedule of renewable energy sources (RES) generation by its intraday adjustment and investigates the measures for reserving RES with unstable generation in electric power systems (EPSs). Owing to the dependence of electricity generation by solar and wind power plants (PV and WPPs respectively) on natural conditions problems arise with their contribution to the process of balancing the power system. Therefore the EPS is obliged to keep a power reserve to compensate for deviations in RES from the planned generation amount. A system-wide reserve (mainly the shunting capacity of thermal and hydroelectric power plants) is used first followed by other means of power reserve: electrochemical hydrogen or biogas plants. To analyze the technical and economic efficiency of certain backup means mathematical models based on the theory of similarity and the criterion method were developed. This method is preferred because it provides the ability to compare different methods of backing up RES generation with each other assess their proportionality and determine the sensitivity of costs to the capacity of backup methods with minimal available initial information. Criterion models have been formed that allow us to build dependencies of the costs of backup means for unstable RES generation on the capacity of the backup means. It is shown that according to the results of the analysis of various methods and means of RES backup hydrogen technologies are relatively the most effective. The results of the analysis in relative units can be clarified if the current and near-term price indicators are known.
Numerical Evaluation of Terrain Landscape Influence on Hydrogen Explosion Consequences
Sep 2021
Publication
The aim of this study is to assess numerically the influence of terrain landscape on the distribution of probable harmful consequences to personnel of hydrogen fueling station caused by an accidentally released and exploded hydrogen. In order to extract damaging factors of the hydrogen explosion wave (maximum overpressure and impulse of pressure phase) a three-dimensional mathematical model of gas mixture dynamics with chemical interaction is used. It allows controlling current pressure in every local point of actual space taking into account complex terrain. This information is used locally in every computational cell to evaluate the conditional probability of such consequences on human beings as ear-drum rupture and lethal ones on the basis of probit analysis. In order to use this technique automatically during the computational process the tabular dependence ""probit-functionimpact probability"" is replaced by a piecewise cubic spline. To evaluate the influence of the landscape profile on the non-stationary three-dimensional overpressure distribution above the earth surface near an epicenter of accidental hydrogen explosion a series of computational experiments with different variants of the terrain is carried out. Each variant differs in the level of mutual arrangement of the explosion epicenter and the places of possible location of personnel. Two control points with different distances from the explosion epicenter are considered. Diagrams of lethal and ear-drum rupture conditional probabilities are build to compare different variants of landscape profile. It is found that the increase or decrease in the level of the location of the control points relative to the level of the epicenter of the explosion significantly changes the scale of the consequences in the actual zone around the working places and should be taken into account by the risk managing experts at the stage of deciding on the level of safety at hydrogen fueling stations.
AMHYCO Project - Towards Advanced Accident Guidelines for Hydrogen Safety in Nuclear Power Plants
Sep 2021
Publication
Severe accidents in nuclear power plants are potentially dangerous to both humans and the environment. To prevent and/or mitigate the consequences of these accidents it is paramount to have adequate accident management measures in place. During a severe accident combustible gases — especially hydrogen and carbon monoxide — can be released in significant amounts leading to a potential explosion risk in the nuclear containment building. These gases need to be managed to avoid threatening the containment integrity which can result in the releases of radioactive material into the environment. The main objective of the AMHYCO project is to propose innovative enhancements in the way combustible gases are managed in case of a severe accident in currently operating reactors. For this purpose the AMHYCO project pursues three specific activities including experimental investigations of relevant phenomena related to hydrogen / carbon monoxide combustion and mitigation with PARs (Passive Autocatalytic Recombiners) improvement of the predictive capabilities of analysis tools used for explosion hazard evaluation inside the reactor containment as well as enhancement of the Severe Accident Management Guidelines (SAMGs) with respect to combustible gases risk management based on theoretical and experimental results. Officially launched on 1 October 2020 AMHYCO is an EU-funded Horizon 2020 project that will last 4 years from 2020 to 2024. This international project consists of 12 organizations (six from European countries and one from Canada) and is led by the Universidad Politécnica de Madrid (UPM). AMHYCO will benefit from the worldwide experts in combustion science accident management and nuclear safety in its Advisory Board. The paper will give an overview of the work program and planned outcome of the project.
Research of Energy Efficiency and Environmental Performance of Vehicle Power Plant Converted to Work on Alternative Fuels
Apr 2024
Publication
The use of alternative fuels remains an important factor in solving the problem of reducing harmful substances caused by vehicles and decarbonising transport. It is also important to ensure the energy efficiency of vehicle power plants when using different fuels at a sufficient level. The article presents the results of theoretical and experimental studies of the conversion of diesel engine to alternative fuels with hydrogen admixtures. Methanol is considered as an alternative fuel which is a cheaper alternative to commercial diesel fuel. The chemical essence of improving the calorific value of alternative methanol fuel was investigated. Studies showed that the energy effect of burning an alternative mixture with hydrogen additives exceeds the effect of burning the same amount of methanol fuel. The increase in combustion energy and engine power is achieved as a result of heat from efficient use of the engine exhaust gases and chemical conversion of methanol. An experimental installation was created to study the work of a converted diesel engine on hydrogen–methanol mixtures and thermochemical regeneration processes. Experimental studies of the energy and environmental parameters of diesel engine converted to work on an alternative fuel with hydrogen admixtures have shown that engine power increases by 10–14% and emissions of harmful substances decrease.
Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane
Jan 2022
Publication
A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover organic waste can serve as the substrate to obtain alternative energy such as biohydrogen (H2 ) and biomethane (CH4 ). This work aimed to design and test new technology for the degradation of food waste coupled with biohydrogen and biomethane production as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste remediate the resulting leachate and generate biogas.
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
Jun 2024
Publication
In this study a theoretical–experimental methodology for determining the stress–strain state in pipeline systems taking into account the hydrogen environment was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out and true diagrams of material destruction were constructed depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated depending on the value of the specific energy of destruction. A study was conducted on tubular samples and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
No more items...