Saudi Arabia
An Overview of Hydrogen Energy Generation
Feb 2024
Publication
The global issue of climate change caused by humans and its inextricable linkage to our present and future energy demand presents the biggest challenge facing our globe. Hydrogen has been introduced as a new renewable energy resource. It is envisaged to be a crucial vector in the vast low-carbon transition to mitigate climate change minimize oil reliance reinforce energy security solve the intermittency of renewable energy resources and ameliorate energy performance in the transportation sector by using it in energy storage energy generation and transport sectors. Many technologies have been developed to generate hydrogen. The current paper presents a review of the current and developing technologies to produce hydrogen from fossil fuels and alternative resources like water and biomass. The results showed that reformation and gasification are the most mature and used technologies. However the weaknesses of these technologies include high energy consumption and high carbon emissions. Thermochemical water splitting biohydrogen and photo-electrolysis are long-term and clean technologies but they require more technical development and cost reduction to implement reformation technologies efficiently and on a large scale. A combination of water electrolysis with renewable energy resources is an ecofriendly method. Since hydrogen is viewed as a considerable game-changer for future fuels this paper also highlights the challenges facing hydrogen generation. Moreover an economic analysis of the technologies used to generate hydrogen is carried out in this study.
An Optimization-Based Model for A Hybrid Photovoltaic-Hydrogen Storage System for Agricultural Operations in Saudi Arabia
Apr 2023
Publication
Renewable energy technologies and resources particularly solar photovoltaic systems provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task as it has a significant impact on the overall cost of the system. In this paper a mixed-integer linear programming-based model is proposed for designing an integrated photovoltaic-hydrogen renewable energy system to minimize total life costs for one of Saudi Arabia’s most important fields a greenhouse farm. The aim of the proposed system is to determine the number of photovoltaic (PV) modules the amount of hydrogen accumulated over time and the number of hydrogen tanks. In addition binary decision variables are used to describe either-or decisions on hydrogen tank charging and discharging. To solve the developed model an exact approach embedded in the general algebraic modeling System (GAMS) software was utilized. The model was validated using a farm consisting of 20 greenhouses a worker-housing area and a water desalination station with hourly energy demand. The findings revealed that 1094 PV panels and 1554 hydrogen storage tanks are required to meet the farm’s load demand. In addition the results indicated that the annual energy cost is $228234 with a levelized cost of energy (LCOE) of 0.12 $/kWh. On the other hand the proposed model reduced the carbon dioxide emissions to 882 tons per year. These findings demonstrated the viability of integrating an electrolyzer fuel cell and hydrogen tank storage with a renewable energy system; nevertheless the cost of energy produced remains high due to the high capital cost. Moreover the findings indicated that hydrogen technology can be used as an energy storage solution when the production of renewable energy systems is variable as well as in other applications such as the industrial residential and transportation sectors. Furthermore the results revealed the feasibility of employing renewable energy as a source of energy for agricultural operations.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Evaluation of Green and Blue Hydrogen Production Potential in Saudi Arabia
Sep 2024
Publication
The Kingdom of Saudi Arabia has rich renewable energy resources specifically wind and solar in addition to geothermal beside massive natural gas reserves. This paper investigates the potential of both green and blue hydrogen production for five selected cities in Saudi Arabia. To accomplish the said objective a techno-economic model is formulated. Four renewable energy scenarios are evaluated for a total of 1.9 GW installed capacity to reveal the best scenario of Green Hydrogen Production (GHP) in each city. Also Blue Hydrogen Production (BHP) is investigated for three cases of Steam Methane Reforming (SMR) with different percentages of carbon capture. The economic analysis for both GHP and BHP is performed by calculating the Levelized Cost of Hydrogen (LCOH) and cash flow. The LCOH for GHP range for all cities ($3.27/kg -$12.17/kg)) with the lowest LCOH is found for NEOM city (50% PV and 50% wind) ($3.27/kg). LCOH for BHP are $0.534/kg $0.647/kg and $0.897/kg for SMR wo CCS/U SMR 55% CCS/U and SMR 90% CCS/U respectively.
Renewable Hydrogen Production Steps Up Wastewater Treatment under Low-carbon Electricity Sources - A Call Forth Approach
Sep 2024
Publication
Switching to renewable resources for hydrogen production is essential. Present hydrogen resources such as coal oil and natural gas are depleted and rapidly moving to a dead state and they possess a high carbon footprint. Wastewater is a promising avenue in searching for a renewable hydrogen production resource. Profuse techniques are preferred for hydrogen production. Among them electrolysis is great with wastewater against biological processes by hydrogen purity. Present obstacles behind the process are conversion efficiency intensive energy and cost. This review starts with hydrogen demand wastewater availability and their H2 potential then illustrates the three main types of electrolysis. The main section highlights renewable energy-assisted electrolysis because of its low carbon footprint and zero emission potential for various water electrolysis. High-temperature steam solid oxide electrolysis is a viable option for future scaling due to the versatile adoption of photo electric and thermal energy. A glance at some effective aspirations to large-scale H2 economics such as co-generation biomass utilization Microbial electrolysis waste to low-cost green electrode Carbon dioxide hydrogenation and minerals recovery. This study gives a broader view of facing challenges via versatile future perspectives to eliminate the obstacles above. renewable green H2 along with a low carbon footprint and cost potential to forward the large-scale wastewater electrolysis H2 production in addition to preserving the environment from wastewater and fossil fuel. Geographical and seasonal availability constraints are unavoidable; therefore energy storage and coupling of power sources is essential to attain consistent supply. The lack of regulations and policies supporting the development and adoption of these technologies did not reduce the gap between research and implementation. Life cycle assessment of this electrolysis process is rarely available so we need to focus on the natural effect of this process on the environment.
A Perspective on Emerging Energy Policy and Economic Research Agenda for Enabling Aviation Climate Action
Sep 2024
Publication
Due to the aviation energy sector's increasing contribution to climate change and the impact of climate change on the aviation sector determining key energy policy and economic research priorities for enabling an effective and equitable aviation climate action is becoming an increasingly important topic. In this perspective we address this research need using a four-pronged methodology. It includes (i) identifying topical matters highlighted in the media (news); (ii) formulating novel and feasible policy and economic research challenges that pertain to these contemporary issues; (iii) cross-referencing the proposed research challenges with academic literature to confirm their novelty and refining them as necessary; and (iv) validating the importance novelty and feasibility of these research challenges through consultation with a diverse group of aviation experts in fuel policy technology and infrastructure fields. Our results highlight twelve main themes. Among these the top emerging policy and economic research challenges as prioritized by expert input are – (i) frameworks for equitable responsibility allocation between developed and developing country airlines for future emissions; (ii) cost analysis of airlines' net-zero by 2050 commitments; (iii) effectiveness and opportunity cost of airlines investing in offsetting relative to reduction measures; (iv) EU aviation policies' historical and potential effects on airfares demand emissions EU air carriers' competitiveness passenger traffic through EU hubs regional economies and social climate funds' ability to mitigate distributional effects of EU aviation policies. These identified priorities can steer both industry and academic research toward creating practical recommendations for policymakers and industry participants. When it comes to future research the ever-changing nature of the challenges in achieving aviation climate action means that our findings might need regular updates.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
No more items...