Russian Federation
Prospects of Hydrogen Application as a Fuel for Large-Scale Compressed-Air Energy Storages
Jan 2024
Publication
A promising method of energy storage is the combination of hydrogen and compressed-air energy storage (CAES) systems. CAES systems are divided into diabatic adiabatic and isothermal cycles. In the diabatic cycle thermal energy after air compression is discharged into the environment and the scheme implies the use of organic fuel. Taking into account the prospects of the decarbonization of the energy industry it is advisable to replace natural gas in the diabatic CAES scheme with hydrogen obtained by electrolysis using power-to-gas technology. In this article the SENECA-1A project is considered as a high-power hybrid unit using hydrogen instead of natural gas. The results show that while keeping the 214 MW turbines powered the transition to hydrogen reduces carbon dioxide emissions from 8.8 to 0.0 kg/s while the formation of water vapor will increase from 17.6 to 27.4 kg/s. It is shown that the adiabatic CAES SENECA-1A mode compared to the diabatic has 0.0 carbon dioxide and water vapor emission with relatively higher efficiency (71.5 vs. 62.1%). At the same time the main advantage of the diabatic CAES is the possibility to produce more power in the turbine block (214 vs. 131.6 MW) having fewer capital costs. Thus choosing the technology is a subject of complex technical economic and ecological study.
Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage
Jul 2024
Publication
The circular economy and the clean-energy transition are inextricably linked and interdependent. One of the most important areas of the energy transition is the development of hydrogen energy. This study aims to review and systematize the data available in the literature on the environmental and economic parameters of hydrogen storage and transportation technologies (both mature and at high technological readiness levels). The study concluded that salt caverns and pipeline transportation are the most promising methods of hydrogen storage and transportation today in terms of a combination of all parameters. These methods are the most competitive in terms of price especially when transporting hydrogen over short distances. Thus the average price of storage will be 0.35 USD/kg and transportation at a distance of up to 100 km is 0.3 USD/kg. Hydrogen storage underground in a gaseous state and its transportation by pipelines have the least consequences for the environment: emissions and leaks are insignificant and there is no environmental pollution. The study identifies these methods as particularly viable given their lower environmental impact and potential for seamless integration into existing energy systems therefore supporting the transition to a more sustainable and circular economy.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
No more items...